IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.3359.html
   My bibliography  Save this paper

Making Mean-Variance Hedging Implementable in a Partially Observable Market

Author

Listed:
  • Masaaki Fujii
  • Akihiko Takahashi

Abstract

The mean-variance hedging (MVH) problem is studied in a partially observable market where the drift processes can only be inferred through the observation of asset or index processes. Although most of the literatures treat the MVH problem by the duality method, here we study a system consisting of three BSDEs derived by Mania and Tevzadze (2003) and Mania et.al.(2008) and try to provide more explicit expressions directly implementable by practitioners. Under the Bayesian and Kalman-Bucy frameworks, we find that a relevant BSDE yields a semi-closed solution via a simple set of ODEs which allow a quick numerical evaluation. This renders remaining problems equivalent to solving European contingent claims under a new forward measure, and it is straightforward to obtain a forward looking non-sequential Monte Carlo simulation scheme. We also give a special example where the hedging position is available in a semi-closed form. For more generic setups, we provide explicit expressions of approximate hedging portfolio by an asymptotic expansion. These analytic expressions not only allow the hedgers to update the hedging positions in real time but also make a direct analysis of the terminal distribution of the hedged portfolio feasible by standard Monte Carlo simulation.

Suggested Citation

  • Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market," Papers 1306.3359, arXiv.org, revised Nov 2013.
  • Handle: RePEc:arx:papers:1306.3359
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.3359
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Mania & R. Tevzadze, 2003. "Backward Stochastic PDE and Imperfect Hedging," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 663-692.
    2. Masaaki Fujii & Akihiko Takahashi, 2011. "Analytical Approximation for Non-linear FBSDEs with Perturbation Scheme," Papers 1106.0123, arXiv.org, revised Jan 2012.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs with Jumps," Papers 1510.03220, arXiv.org, revised Sep 2018.
    2. Masaaki Fujii & Akihiko Takahashi, 2018. "Asymptotic Expansion for Forward-Backward SDEs with JumpsAsymptotic Expansion for Forward-Backward SDEs with Jumps (Forthcoming in Stochastics) (Revised version of F-372)," CARF F-Series CARF-F-445, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    4. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    5. Masaaki Fujii & Akihiko Takahshi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," CIRJE F-Series CIRJE-F-954, CIRJE, Faculty of Economics, University of Tokyo.
    6. Thai Nguyen & Mitja Stadje, 2020. "Forward BSDEs and backward SPDEs for utility maximization under endogenous pricing," Papers 2005.04312, arXiv.org, revised Oct 2020.
    7. Ulrich Horst & Jinniao Qiu & Qi Zhang, 2014. "A Constrained Control Problem with Degenerate Coefficients and Degenerate Backward SPDEs with Singular Terminal Condition," Papers 1407.0108, arXiv.org, revised Jul 2015.
    8. Masaaki Fujii, 2015. "Optimal Position Management for a Market Maker with Stochastic Price Impacts," CARF F-Series CARF-F-360, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Sep 2015.
    9. Masaaki Fujii & Seisho Sato & Akihiko Takahashi, 2012. "An FBSDE Approach to American Option Pricing with an Interacting Particle Method," CARF F-Series CARF-F-302, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Kenichiro Shiraya & Akihiko Takahashi, 2015. "An approximation formula for basket option prices under local stochastic volatility with jumps: an application to commodity markets," CARF F-Series CARF-F-361, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.
    11. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations with quadratic-growth drivers by Connecting the Short-term Expansions," Papers 1606.04285, arXiv.org, revised May 2018.
    12. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs (Forthcoming in Asia-Pacific Financial Markets)," CARF F-Series CARF-F-456, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Stéphane Crépey & Shiqi Song, 2018. "Counterparty risk and funding: immersion and beyond," Working Papers hal-01764403, HAL.
    14. Masaaki Fujii, 2016. "A polynomial scheme of asymptotic expansion for backward SDEs and option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 427-445, March.
    15. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    16. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs with Jumps," CIRJE F-Series CIRJE-F-993, CIRJE, Faculty of Economics, University of Tokyo.
    17. Kenichiro Shiraya & Akihiko Takahashi, 2015. "An Approximation Formula for Basket Option Prices under Local Stochastic Volatility with Jumps: an Application to Commodity Markets," CIRJE F-Series CIRJE-F-973, CIRJE, Faculty of Economics, University of Tokyo.
    18. Akihiko Takahashi & Toshihiro Yamada, 2016. "An Asymptotic Expansion for Forward–Backward SDEs: A Malliavin Calculus Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 23(4), pages 337-373, December.
    19. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CIRJE F-Series CIRJE-F-1069, CIRJE, Faculty of Economics, University of Tokyo.
    20. Akihiko Takahashi & Toshihiro Yamada, 2015. "An Asymptotic Expansion of Forward-Backward SDEs with a Perturbed Driver," CARF F-Series CARF-F-363, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.3359. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.