IDEAS home Printed from
   My bibliography  Save this paper

Making Mean-Variance Hedging Implementable in a Partially Observable Market -with supplementary contents for stochastic interest rates-


  • Masaaki Fujii

    (Faculty of Economics, University of Tokyo)

  • Akihiko Takahashi

    (Faculty of Economics, University of Tokyo)


   The mean-variance hedging (MVH) problem is studied in a partially observable market where the drift processes can only be inferred through the observation of asset or index processes. Although most of the literatures treat the MVH problem by the duality method, here we study a system consisting of three BSDEs derived by Mania and Tevzadze (2003) and Mania and try to provide more explicit expressions directly implementable by practitioners. Under the Bayesian and Kalman- Bucy frameworks, we find that a relevant BSDE can yield a semi-closed solution via a simple set of ODEs which allow a quick numerical evaluation. This renders remaining problems equivalent to solving European contingent claims under a new forward measure, and it is straightforward to obtain a forward looking non-sequential Monte Carlo simulation scheme. We also give a special example where the hedging position is available in a semi-closed form. For more generic setups, we provide explicit expressions of approximate hedging portfolio by an asymptotic expansion. These analytic expressions not only allow the hedgers to update the hedging positions in real time but also make a direct analysis of the terminal distribution of the hedged portfolio feasible by standard Monte Carlo simulation.

Suggested Citation

  • Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market -with supplementary contents for stochastic interest rates-," CIRJE F-Series CIRJE-F-891, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2013cf891

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Michael Mania & Marina Santacroce, 2010. "Exponential utility maximization under partial information," Finance and Stochastics, Springer, vol. 14(3), pages 419-448, September.
    2. Masaaki Fujii & Akihiko Takahashi, 2011. "Analytical Approximation for Non-linear FBSDEs with Perturbation Scheme," Papers 1106.0123,, revised Jan 2012.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2013cf891. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.