IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Analytical Approximation for Non-linear FBSDEs with Perturbation Scheme

Listed author(s):
  • Masaaki Fujii
  • Akihiko Takahashi
Registered author(s):

    In this work, we have presented a simple analytical approximation scheme for generic non-linear FBSDEs. By treating the interested system as the linear decoupled FBSDE perturbed with non-linear generator and feedback terms, we have shown that it is possible to carry out a recursive approximation to an arbitrarily higher order, where the required calculations in each order are equivalent to those for standard European contingent claims. We have also applied the perturbative method to the PDE framework following the so-called Four Step Scheme. The method is found to render the original non-linear PDE into a series of standard parabolic linear PDEs. Due to the equivalence of the two approaches, it is also possible to derive approximate analytic solution for the non-linear PDE by applying the asymptotic expansion to the corresponding probabilistic model. Two simple examples are provided to demonstrate how the perturbation works and show its accuracy relative to known numerical techniques. The method presented in this paper may be useful for various important problems which have eluded analytical treatment so far.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1106.0123.

    in new window

    Date of creation: Jun 2011
    Date of revision: Jan 2012
    Handle: RePEc:arx:papers:1106.0123
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.0123. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.