IDEAS home Printed from https://ideas.repec.org/p/sbs/wpsefe/2002mf03.html
   My bibliography  Save this paper

Analytical Comparisons of Option prices in Stochastic Volatility Models

Author

Listed:
  • Vicky Henderson

Abstract

This paper orders option prices under various well known martingale measures in an incomplete stochastic volatility model. The central result is a comparison theorem which proves convex option prices are decreasing in the market price of volatility risk, the parameter governing the choice of pricing measure. The theorem is applied to order option prices under the minimal martingale, q-optimal and minimal entropy measures. This ordering depends on the mean variance tradeoff process whilst the specifics of the volatility dynamics are not important. We illustrate our results by analyzing the Hull and White, Heston and Stein and Stein models.

Suggested Citation

  • Vicky Henderson, 2002. "Analytical Comparisons of Option prices in Stochastic Volatility Models," OFRC Working Papers Series 2002mf03, Oxford Financial Research Centre.
  • Handle: RePEc:sbs:wpsefe:2002mf03
    as

    Download full text from publisher

    File URL: http://www.finance.ox.ac.uk/file_links/finecon_papers/2002mf03.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    2. Frey, Rüdiger, 1997. "Derivative Asset Analysis in Models with Level-Dependent and Stochastic Volatility," Discussion Paper Serie B 401, University of Bonn, Germany.
    3. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52.
    4. Martin Schweizer & Christophe Stricker & Freddy Delbaen & Pascale Monat & Walter Schachermayer, 1997. "Weighted norm inequalities and hedging in incomplete markets," Finance and Stochastics, Springer, vol. 1(3), pages 181-227.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Martin Schweizer & HuyËn Pham & (*), Thorsten RheinlÄnder, 1998. "Mean-variance hedging for continuous processes: New proofs and examples," Finance and Stochastics, Springer, vol. 2(2), pages 173-198.
    7. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413.
    8. Schweizer, Martin, 1999. "A minimality property of the minimal martingale measure," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 27-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gatfaoui Hayette & Chauveau Thierry, 2004. "Pricing and Hedging Options in Incomplete Markets: Idiosyncratic Risk, Systematic Risk and Stochastic Volatility," Finance 0404002, EconWPA.
    2. David Hobson, 2004. "STOCHASTIC VOLATILITY MODELS, CORRELATION, AND THE "q"-OPTIMAL MEASURE," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 537-556.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2002mf03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxine Collett). General contact details of provider: http://edirc.repec.org/data/frcoxuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.