IDEAS home Printed from
   My bibliography  Save this paper

A Generalisation of Malliavin Weighted Scheme for Fast Computation of the Greeks


  • Eric Benhamou

    (Goldman Sachs International)


This paper presented a new technique for the simulation of the Greeks (i.e. price sensitivities to parameters), efficient for strongly discontinuous payo¤ options. The use of Malliavin calculus, by means of an integration by parts, enables to shift the differentiation operator from the payo¤ function to the diffusion kernel, introducing a weighting function.(Fournie et al. (1999)). Expressing the weighting function as a Skorohod integral, we show how to characterize the integrand with necessary and sufficient conditions, giving a complete description of weighting function solutions. Interestingly, for adapted process, the Skorohod integral turns to be the classical Ito integral.

Suggested Citation

  • Eric Benhamou, 2002. "A Generalisation of Malliavin Weighted Scheme for Fast Computation of the Greeks," Finance 0212003, EconWPA.
  • Handle: RePEc:wpa:wuwpfi:0212003
    Note: Type of Document - PDF; prepared on windows; pages: 126

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    2. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    3. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Paul Glasserman & David D. Yao, 1992. "Some Guidelines and Guarantees for Common Random Numbers," Management Science, INFORMS, vol. 38(6), pages 884-908, June.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Monte-Carlo; Quasi-Monte Carlo; Greeks; Malliavin Calculus; Wiener Chaos.;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0212003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.