IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.00552.html
   My bibliography  Save this paper

Drawdowns, Drawups, and Occupation Times under General Markov Models

Author

Listed:
  • Pingping Zeng
  • Gongqiu Zhang
  • Weinan Zhang

Abstract

Drawdown risk, an important metric in financial risk management, poses significant computational challenges due to its highly path-dependent nature. This paper proposes a unified framework for computing five important drawdown quantities introduced in Landriault et al. (2015) and Zhang (2015) under general Markov models. We first establish linear systems and develop efficient algorithms for such problems under continuous-time Markov chains (CTMCs), and then establish their theoretical convergence to target quantities under general Markov models. Notably, the proposed algorithms for most quantities achieve the same complexity order as those for path-independent problems: cubic in the number of CTMC states for general Markov models and linear when applied to diffusion models. Rigorous convergence analysis is conducted under weak regularity conditions, and extensive numerical experiments validate the accuracy and efficiency of the proposed algorithms.

Suggested Citation

  • Pingping Zeng & Gongqiu Zhang & Weinan Zhang, 2025. "Drawdowns, Drawups, and Occupation Times under General Markov Models," Papers 2506.00552, arXiv.org.
  • Handle: RePEc:arx:papers:2506.00552
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.00552
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.00552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.