IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Are European equity markets efficient? New evidence from fractal analysis

  • Enrico Onali
  • John Goddard

Fractal analysis is carried out on the stock market indices of seven European countries and the US. We find evidence of long range dependence in the log return series of the Mibtel (Italy) and the PX Glob (Czech Republic). Long range dependence implies that predictable patterns in the log returns do not dissipate quickly, and may therefore produce potential arbitrage opportunities. Therefore, these results are in contravention of the Efficient Market Hypothesis. We show that correcting for short range dependence, or prefiltering, may dispose of genuine long range dependence, suggesting that the market is efficient in cases when it is not. Prefiltering does not reduce significantly the power of the tests only for cases for which the Hurst exponent (a measure of the long range dependence) lies well outside the boundaries of no long range dependence. For borderline cases, the prefiltering procedure reduces the power of the test. On the other hand, the absence of prefiltering does not result in a test that is significantly oversized.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1402.1440
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1402.1440.

as
in new window

Length:
Date of creation: Feb 2014
Date of revision:
Publication status: Published in International Review of Financial Analysis(2011), Vol 20, pp 59 67
Handle: RePEc:arx:papers:1402.1440
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
  2. Opong, Kwaku K. & Mulholland, Gwyneth & Fox, Alan F. & Farahmand, Kambiz, 1999. "The behaviour of some UK equity indices: An application of Hurst and BDS tests1," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 267-282, September.
  3. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
  5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
  6. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
  7. McKenzie, Michael D, 2001. "Non-periodic Australian Stock Market Cycles: Evidence from Rescaled Range Analysis," The Economic Record, The Economic Society of Australia, vol. 77(239), pages 393-406, December.
  8. Zhuang, Xin-tian & Huang, Xiao-yuan & Sha, Yan-li, 2004. "Research on the fractal structure in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 293-305.
  9. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
  10. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
  11. Smith, Jeremy & Taylor, Nick & Yadav, Sanjay, 1995. "Comparing the Bias and Misspecification in Arfima Models," The Warwick Economics Research Paper Series (TWERPS) 442, University of Warwick, Department of Economics.
  12. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1999. "A Multifractal Model of Assets Returns," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-072, New York University, Leonard N. Stern School of Business-.
  13. Jacobsen, Ben, 1996. "Long term dependence in stock returns," Journal of Empirical Finance, Elsevier, vol. 3(4), pages 393-417, December.
  14. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
  15. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, 09.
  16. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-36, August.
  17. Costa, Rogério L. & Vasconcelos, G.L., 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 231-248.
  18. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
  19. Fillol, Jerome & Tripier, Fabien, 2004. "The scaling function-based estimator of long memory in the presence of a short-term component," Economics Letters, Elsevier, vol. 84(1), pages 49-54, July.
  20. Sergio Da Silva & Annibal Figueiredo & Iram Gleria & Raul Matsushita, 2007. "Hurst exponents, power laws, and efficiency in the Brazilian foreign exchange market," Economics Bulletin, AccessEcon, vol. 7(1), pages 1-11.
  21. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105.
  22. Kim, Kyungsik & Yoon, Seong-Min, 2004. "Multifractal features of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 272-278.
  23. repec:ebl:ecbull:v:7:y:2007:i:1:p:1-11 is not listed on IDEAS
  24. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
  25. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
  26. Grech, Dariusz & Pamuła, Grzegorz, 2008. "The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4299-4308.
  27. R. L. Costa & G. L. Vasconcelos, 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Papers cond-mat/0302342, arXiv.org.
  28. Norouzzadeh, P. & Jafari, G.R., 2005. "Application of multifractal measures to Tehran price index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 609-627.
  29. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2007. "The Hurst exponent in energy futures prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 325-332.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1402.1440. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.