IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1401.5666.html
   My bibliography  Save this paper

Estimate nothing

Author

Listed:
  • M. Duembgen
  • L. C. G. Rogers

Abstract

In the econometrics of financial time series, it is customary to take some parametric model for the data, and then estimate the parameters from historical data. This approach suffers from several problems. Firstly, how is estimation error to be quantified, and then taken into account when making statements about the future behaviour of the observed time series? Secondly, decisions may be taken today committing to future actions over some quite long horizon, as in the trading of derivatives; if the model is re-estimated at some intermediate time, our earlier decisions would need to be revised - but the derivative has already been traded at the earlier price. Thirdly, the exact form of the parametric model to be used is generally taken as given at the outset; other competitor models might possibly work better in some circumstances, but the methodology does not allow them to be factored into the inference. What we propose here is a very simple (Bayesian) alternative approach to inference and action in financial econometrics which deals decisively with all these issues. The key feature is that nothing is being estimated.

Suggested Citation

  • M. Duembgen & L. C. G. Rogers, 2014. "Estimate nothing," Papers 1401.5666, arXiv.org.
  • Handle: RePEc:arx:papers:1401.5666
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1401.5666
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Jacquier, Eric & Jarrow, Robert, 2000. "Bayesian analysis of contingent claim model error," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 145-180.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Beckers, Stan, 1980. " The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    7. repec:dau:papers:123456789/1392 is not listed on IDEAS
    8. Pag├Ęs Gilles & Printems Jacques, 2003. "Optimal quadratic quantization for numerics: the Gaussian case," Monte Carlo Methods and Applications, De Gruyter, vol. 9(2), pages 135-165, April.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Forecasting of Options Prices: A Natural Framework for Pooling Historical and Implied Volatiltiy Information," Cambridge Working Papers in Economics 0116, Faculty of Economics, University of Cambridge.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecofin:v:42:y:2017:i:c:p:193-217 is not listed on IDEAS

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1401.5666. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.