IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1103.5651.html

Uncovering Long Memory in High Frequency UK Futures

Author

Listed:
  • John Cotter

Abstract

Accurate volatility modelling is paramount for optimal risk management practices. One stylized feature of financial volatility that impacts the modelling process is long memory explored in this paper for alternative risk measures, observed absolute and squared returns for high frequency intraday UK futures. Volatility series for three different asset types, using stock index, interest rate and bond futures are analysed. Long memory is strongest for the bond contract. Long memory is always strongest for the absolute returns series and at a power transformation of k

Suggested Citation

  • John Cotter, 2011. "Uncovering Long Memory in High Frequency UK Futures," Papers 1103.5651, arXiv.org.
  • Handle: RePEc:arx:papers:1103.5651
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1103.5651
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    3. J. Cuñado & L. Gil-Alana & F. Gracia, 2009. "US stock market volatility persistence: evidence before and after the burst of the IT bubble," Review of Quantitative Finance and Accounting, Springer, vol. 33(3), pages 233-252, October.
    4. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    5. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2011. "Long Memory and Fractional Integration in High-Frequency British Pound / Dollar Spot Exchange Rates," Faculty Working Papers 02/11, School of Economics and Business Administration, University of Navarra.
    6. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    7. Gil-Alana, Luis A. & Mudida, Robert & Carcel, Hector, 2017. "Shocks affecting electricity prices in Kenya, a fractional integration study," Energy, Elsevier, vol. 124(C), pages 521-530.
    8. Luis A. Gil-Alana & Trilochan Tripathy, 2016. "Long Range Dependence in the Indian Stock Market: Evidence of Fractional Integration, Non-Linearities and Breaks," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 199-215, December.
    9. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2013. "Long memory and fractional integration in high frequency data on the US dollar/British pound spot exchange rate," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 1-9.
    10. Mustafa Demirel & Gazanfer Unal, 2020. "Applying multivariate-fractionally integrated volatility analysis on emerging market bond portfolios," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-29, December.
    11. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "Crude oil price behaviour before and after military conflicts and geopolitical events," Energy, Elsevier, vol. 120(C), pages 79-91.
    12. Guglielmo Maria Caporale & Alex Plastun, 2022. "Persistence in High Frequency Financial Data," CESifo Working Paper Series 10045, CESifo.
    13. Guglielmo Maria Caporale & Luis Gil-Alana, 2012. "Long Memory and Volatility Dynamics in the US Dollar Exchange Rate," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 105-136, March - J.
    14. John Cotter & Simon Stevenson, 2008. "Modeling Long Memory in REITs," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
    15. Gil-Alana, Luis A. & Mudida, Robert & Yaya, OlaOluwa S & Osuolale, Kazeem & Ogbonna, Ephraim A, 2019. "Influence of US Presidential Terms on S&P500 Index Using a Time Series Analysis Approach," MPRA Paper 93941, University Library of Munich, Germany.
    16. Luis A. Gil-Alana & Yun Cao, 2011. "Stock market prices in China. Efficiency, mean reversion, long memory volatility and other implicit dynamics," Faculty Working Papers 12/11, School of Economics and Business Administration, University of Navarra.
    17. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    18. Carlos P. Barros & Luis A. Gil-Alana & Zhongfei Chen, 2016. "Exchange rate persistence of the Chinese yuan against the US dollar in the NDF market," Empirical Economics, Springer, vol. 51(4), pages 1399-1414, December.
    19. Xu, Dan & Beck, Christian, 2016. "Transition from lognormal to χ2-superstatistics for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 173-183.
    20. Luis A. Gil‐Alana & Robert Mudida & OlaOluwa S. Yaya & Kazeem A. Osuolale & Ahamuefula E. Ogbonna, 2021. "Mapping US presidential terms with S&P500 index: Time series analysis approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1938-1954, April.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G0 - Financial Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1103.5651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.