IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2023001.html
   My bibliography  Save this paper

A demand-responsive feeder service with a maximum headway at mandatory stops

Author

Listed:
  • GALARZA MONTENEGRO, Bryan David
  • SÖRENSEN, Kenneth
  • VANSTEENWEGEN, Pieter

Abstract

Public transportation out of suburban or rural areas is crucial. Feeder transportation services offer a solution by transporting passengers to areas where more options for public transport are available. On one hand, fully flexible demand-responsive feeder services efficiently tailor their service to the needs of the passengers. On the other hand, traditional feeder services provide predictability and easier cost control. In this paper, a semi-flexible demand-responsive feeder service is considered, which combines positive characteristics of both traditional services as well as fully flexible services. This feeder service has two types of bus stops: mandatory bus stops and optional bus stops. Mandatory bus stops are guaranteed to be visited by a bus within a certain time interval. Optional stops are only visited when there is demand for transportation nearby. The performance of this feeder service is optimized with the use of a heuristic that combines elements of different metaheuristic frameworks. Experimental results on small benchmark instances indicate that the heuristic performs on average 12.42% better than LocalSolver, a commercial optimization solver, with an average runtime of 2.1s. Larger instances can also be solved, typically within two minutes.

Suggested Citation

  • GALARZA MONTENEGRO, Bryan David & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter, 2023. "A demand-responsive feeder service with a maximum headway at mandatory stops," Working Papers 2023001, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2023001
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/d96636/rps_2023_001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    2. Shrivastava, Prabhat & O'Mahony, Margaret, 2006. "A model for development of optimized feeder routes and coordinated schedules--A genetic algorithms approach," Transport Policy, Elsevier, vol. 13(5), pages 413-425, September.
    3. Alan Lee & Martin Savelsbergh, 2017. "An extended demand responsive connector," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 25-50, March.
    4. András Lakatos & János Tóth & Péter Mándoki, 2020. "Demand Responsive Transport Service of ‘Dead-End Villages’ in Interurban Traffic," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    5. Teodor Crainic & Fausto Errico & Federico Malucelli & Maddalena Nonato, 2012. "Designing the master schedule for demand-adaptive transit systems," Annals of Operations Research, Springer, vol. 194(1), pages 151-166, April.
    6. Jen-Jia Lin & Huei-In Wong, 2014. "Optimization of a feeder-bus route design by using a multiobjective programming approach," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(5), pages 430-449, July.
    7. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    8. Babak Mehran & Yongzhe Yang & Sushreeta Mishra, 2020. "Analytical models for comparing operational costs of regular bus and semi-flexible transit services," Public Transport, Springer, vol. 12(1), pages 147-169, March.
    9. Lin Wang & S. C. Wirasinghe & Lina Kattan & Saeid Saidi, 2018. "Optimization of demand-responsive transit systems using zonal strategy," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 22(3), pages 366-381, July.
    10. Liu, Tao & Ceder, Avishai (Avi), 2015. "Analysis of a new public-transport-service concept: Customized bus in China," Transport Policy, Elsevier, vol. 39(C), pages 63-76.
    11. Stefan Voßs & Andreas Fink & Cees Duin, 2005. "Looking Ahead with the Pilot Method," Annals of Operations Research, Springer, vol. 136(1), pages 285-302, April.
    12. Lucio Martins, Carlos & Vaz Pato, Margarida, 1998. "Search strategies for the feeder bus network design problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 425-440, April.
    13. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    14. Teodor Gabriel Crainic & Federico Malucelli & Maddalena Nonato & François Guertin, 2005. "Meta-Heuristics for a Class of Demand-Responsive Transit Systems," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 10-24, February.
    15. Bo Sun & Ming Wei & Senlai Zhu, 2018. "Optimal Design of Demand-Responsive Feeder Transit Services with Passengers’ Multiple Time Windows and Satisfaction," Future Internet, MDPI, vol. 10(3), pages 1-15, March.
    16. Kim, Myungseob (Edward) & Schonfeld, Paul, 2014. "Integration of conventional and flexible bus services with timed transfers," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 76-97.
    17. Handy, Susan & Weston, Lisa & Mokhtarian, Patricia L., 2005. "Driving by choice or necessity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 183-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Sun & Ming Wei & Chunfeng Yang & Zhihuo Xu & Han Wang, 2018. "Personalised and Coordinated Demand-Responsive Feeder Transit Service Design: A Genetic Algorithms Approach," Future Internet, MDPI, vol. 10(7), pages 1-14, July.
    2. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    3. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    4. Curtin, Kevin M. & Biba, Steve, 2011. "The Transit Route Arc-Node Service Maximization problem," European Journal of Operational Research, Elsevier, vol. 208(1), pages 46-56, January.
    5. Bo Sun & Ming Wei & Senlai Zhu, 2018. "Optimal Design of Demand-Responsive Feeder Transit Services with Passengers’ Multiple Time Windows and Satisfaction," Future Internet, MDPI, vol. 10(3), pages 1-15, March.
    6. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    7. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    8. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    9. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    10. Rick Grahn & Sean Qian & Chris Hendrickson, 2023. "Optimizing first- and last-mile public transit services leveraging transportation network companies (TNC)," Transportation, Springer, vol. 50(5), pages 2049-2076, October.
    11. Fan, Wenbo & Gu, Weihua & Xu, Meng, 2024. "Optimal design of ride-pooling as on-demand feeder services," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    12. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    13. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    14. Tang, Xindi & Yang, Jie & Lin, Xi & He, Fang & Si, Jinhua, 2023. "Dynamic operations of an integrated mobility service system of fixed-route transits and flexible electric buses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    15. Yu, Yao & Machemehl, Randy B. & Xie, Chi, 2015. "Demand-responsive transit circulator service network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 160-175.
    16. Xudong Li & Zhongzhen Yang & Feng Lian, 2023. "Optimizing On-Demand Bus Services for Remote Areas," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    17. Sivakumaran, Karthik & Li, Yuwei & Cassidy, Michael & Madanat, Samer, 2014. "Access and the choice of transit technology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 204-221.
    18. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    19. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    20. Xuekai Cen & Kanghui Ren & Yiying Cai & Qun Chen, 2023. "Designing Flexible-Bus System with Ad-Hoc Service Using Travel-Demand Clustering," Mathematics, MDPI, vol. 11(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2023001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.