IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v12y2020i1d10.1007_s12469-019-00222-z.html
   My bibliography  Save this article

Analytical models for comparing operational costs of regular bus and semi-flexible transit services

Author

Listed:
  • Babak Mehran

    (University of Manitoba)

  • Yongzhe Yang

    (City of Calgary, Building Q, Manchester Centre)

  • Sushreeta Mishra

    (University of Manitoba)

Abstract

The provision of public transit services is essential to provide citizens with an improved quality of life. The most popular fixed route bus service (FRBS) is intended to serve a large population along with fixed stops, routes, and schedules. However, in low demand conditions, bus transit operators pay a high cost per passenger to maintain the desired level of service. A demand-responsive transit (DRT) is a commonly discussed transportation solution for serving low passenger demand. Although the conventional DRT system offers a shared-ride door-to-door service to passengers, its implementation is challenging and expensive during peak hours. The present study suggests a form of transit system that combines the rigidity of FRBS and flexibility of DRT to operate in low demand routes. This defined category of transit service is referred to as semi-flexible transit (SFT) system. The proposed SFT service is delivered along the fixed bus route and a limited number of fixed stops based on a flexible schedule to meet passenger requests. The defined SFT system offers reduced operating time and higher vehicle utilization. The study considers an operation of the proposed SFT service for two types of service delivery systems: Contract-Out Taxi Service (COTS), and In-House Paratransit Service (IHPS). A methodology is proposed to develop analytical models describing operational costs of regular FRBS, COTS, and IHPS as a function of demand or annual ridership. Operating cost models are proposed as a decision support tool to enable transit planners to determine the passenger demands along the route at which it is justifiable to “switch” from FRBS to the SFT system to minimize the total cost of operation. Further, the analysis results for FRBS indicate that operating costs are strongly related to vehicle-service hours and for SFT services to average vehicle occupancy rate and deadheading time. Applications of the proposed models and analysis method are demonstrated for a low demand route in the City of Regina.

Suggested Citation

  • Babak Mehran & Yongzhe Yang & Sushreeta Mishra, 2020. "Analytical models for comparing operational costs of regular bus and semi-flexible transit services," Public Transport, Springer, vol. 12(1), pages 147-169, March.
  • Handle: RePEc:spr:pubtra:v:12:y:2020:i:1:d:10.1007_s12469-019-00222-z
    DOI: 10.1007/s12469-019-00222-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-019-00222-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-019-00222-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quadrifoglio, Luca & Dessouky, Maged M. & Ordonez, Fernando, 2008. "Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints," European Journal of Operational Research, Elsevier, vol. 185(2), pages 481-494, March.
    2. Evert J Meijers & Martijn J Burger, 2010. "Spatial Structure and Productivity in US Metropolitan Areas," Environment and Planning A, , vol. 42(6), pages 1383-1402, June.
    3. Dessouky, Maged & Palmer, Kurt & Abdelmaguid, Tamer, 2003. "Benchmarking Best Practices of Demand Responsive Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3c77b9wd, Institute of Transportation Studies, UC Berkeley.
    4. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    5. Rahimi, Mahour & Amirgholy, Mahyar & Gonzales, Eric J., 2018. "System modeling of demand responsive transportation services: Evaluating cost efficiency of service and coordinated taxi usage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 66-83.
    6. Marco Diana & Luca Quadrifoglio & Cristina Pronello, 2009. "A methodology for comparing distances traveled by performance-equivalent fixed-route and demand responsive transit services," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(4), pages 377-399, June.
    7. Cayford, Randall & Yim, Y. B. Youngbin, 2004. "Personalized Demand-Responsive Transit Service," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt29j111ts, Institute of Transportation Studies, UC Berkeley.
    8. Khaled A. Abbas & Mona H. Abd-Allah, 1999. "Estimation and assessment of cost allocation models for main transit systems operating in Cairo," Transport Reviews, Taylor & Francis Journals, vol. 19(4), pages 353-375, January.
    9. Palmer, Kurt & Dessouky, Maged & Abdelmaguid, Tamer, 2004. "Impacts of management practices and advanced technologies on demand responsive transit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 495-509, August.
    10. Gupta, Diwakar & Chen, Hao-Wei & Miller, Lisa A. & Surya, Fajarrani, 2010. "Improving the efficiency of demand-responsive paratransit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 201-217, May.
    11. Lin Wang & S. C. Wirasinghe & Lina Kattan & Saeid Saidi, 2018. "Optimization of demand-responsive transit systems using zonal strategy," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 22(3), pages 366-381, July.
    12. Aldaihani, Majid M. & Quadrifoglio, Luca & Dessouky, Maged M. & Hall, Randolph, 2004. "Network design for a grid hybrid transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 511-530, August.
    13. Palmer, Kurt & Dessouky, Maged & Zhou, Zhiqiang, 2008. "Factors influencing productivity and operating cost of demand responsive transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(3), pages 503-523, March.
    14. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasanta K. Sahu & Babak Mehran & Surya P. Mahapatra & Satish Sharma, 2021. "Spatial data analysis approach for network-wide consolidation of bus stop locations," Public Transport, Springer, vol. 13(2), pages 375-394, June.
    2. Xudong Li & Zhongzhen Yang & Feng Lian, 2023. "Optimizing On-Demand Bus Services for Remote Areas," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    3. Jaâfar Berrada & Alexis Poulhès, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Post-Print hal-03325200, HAL.
    4. Mishra, Sushreeta & Mehran, Babak & Sahu, Prasanta K., 2020. "Assessment of delivery models for semi-flexible transit operation in low-demand conditions," Transport Policy, Elsevier, vol. 99(C), pages 275-287.
    5. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    6. GALARZA MONTENEGRO, Bryan David & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter, 2023. "A demand-responsive feeder service with a maximum headway at mandatory stops," Working Papers 2023001, University of Antwerp, Faculty of Business and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    2. Qiu, Feng & Shen, Jinxing & Zhang, Xuechi & An, Chengchuan, 2015. "Demi-flexible operating policies to promote the performance of public transit in low-demand areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 215-230.
    3. Kim, Myungseob (Edward) & Schonfeld, Paul, 2015. "Maximizing net benefits for conventional and flexible bus services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 116-133.
    4. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    5. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    6. Nguyen-Hoang, Phuong & Yeung, Ryan, 2010. "What is paratransit worth?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 841-853, December.
    7. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    8. Mishra, Sushreeta & Mehran, Babak & Sahu, Prasanta K., 2020. "Assessment of delivery models for semi-flexible transit operation in low-demand conditions," Transport Policy, Elsevier, vol. 99(C), pages 275-287.
    9. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    10. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    11. Palmer, Kurt & Dessouky, Maged & Zhou, Zhiqiang, 2008. "Factors influencing productivity and operating cost of demand responsive transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(3), pages 503-523, March.
    12. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.
    13. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Sehyun Tak & Soomin Woo & Sungjin Park & Sunghoon Kim, 2021. "The City-Wide Impacts of the Interactions between Shared Autonomous Vehicle-Based Mobility Services and the Public Transportation System," Sustainability, MDPI, vol. 13(12), pages 1-29, June.
    15. G. Dikas & I. Minis, 2018. "Scheduled Paratransit Transport Enhanced by Accessible Taxis," Transportation Science, INFORMS, vol. 52(5), pages 1122-1140, October.
    16. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    17. Deka, Devajyoti & Gonzales, Eric J., 2014. "The generators of paratransit trips by persons with disabilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 181-193.
    18. Marković, Nikola & Kim, Myungseob (Edward) & Schonfeld, Paul, 2016. "Statistical and machine learning approach for planning dial-a-ride systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 41-55.
    19. GALARZA MONTENEGRO, Bryan David & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter, 2023. "A demand-responsive feeder service with a maximum headway at mandatory stops," Working Papers 2023001, University of Antwerp, Faculty of Business and Economics.
    20. Palmer, Kurt & Dessouky, Maged & Zhou, Zhiqiang, 2008. "Factors Influencing Productivity and Operating Cost of Demand Responsive Transit," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt86k0b795, Institute of Transportation Studies, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:12:y:2020:i:1:d:10.1007_s12469-019-00222-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.