IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2021004.html
   My bibliography  Save this paper

The integrated on-demand bus routing problem

Author

Listed:
  • MELIS, Lissa
  • QUEIROZ, Michell
  • SÖRENSEN, kenneth

Abstract

In this work we analyse the performance of integrating a large-scale on-demand bus system with a fixed line public transport network in an urban context. Given are a high-speed metro network, a set of real-time requests, a set of bus station locations and a fleet of fixed capacity minibuses. Requests have a set of possible departure/arrival1 bus stations within walking distance of the actual departure/arrival location and have to be served within a certain time window. The aim is to simultaneously (1) decide on the trip type for each passenger (only bus, metro or mixed), (2) route the on-demand buses, (3) assign each passenger to a departure and arrival bus station (bus station assignment), and (4) in the case of a metro-leg in the trip, decide the assigned transfer station(s) and used metro lines (transfer station assignment). We call this problem the integrated on-demand bus routing problem. After presenting a mathematical model, we propose a quick and scalable insertion-based heuristic to solve the problem. The results found by the heuristic are further used to compare the performance of an integrated system, to a system that only uses on-demand buses. It is concluded that the integrated system always performs better regarding the service rate or number of served requests. Depending on the speed and layout of the metro network, also the average user ride time per passenger improves by the integration.

Suggested Citation

  • MELIS, Lissa & QUEIROZ, Michell & SÖRENSEN, kenneth, 2021. "The integrated on-demand bus routing problem," Working Papers 2021004, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2021004
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docstore/d:irua:7739
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    2. Schittekat, Patrick & Kinable, Joris & Sörensen, Kenneth & Sevaux, Marc & Spieksma, Frits & Springael, Johan, 2013. "A metaheuristic for the school bus routing problem with bus stop selection," European Journal of Operational Research, Elsevier, vol. 229(2), pages 518-528.
    3. Evert J Meijers & Martijn J Burger, 2010. "Spatial Structure and Productivity in US Metropolitan Areas," Environment and Planning A, , vol. 42(6), pages 1383-1402, June.
    4. Marcus Posada & Henrik Andersson & Carl H. Häll, 2017. "The integrated dial-a-ride problem with timetabled fixed route service," Public Transport, Springer, vol. 9(1), pages 217-241, July.
    5. M. Posada & C. H. Häll, 2020. "A metaheuristic for evaluation of an integrated special transport service," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 24(3), pages 316-338, July.
    6. MELIS, Lissa & SÖRENSEN, Kenneth, 2020. "The on-demand bus routing problem: A large neighborhood search heuristic for a dial-a-ride problem with bus station assignment," Working Papers 2020005, University of Antwerp, Faculty of Business and Economics.
    7. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    8. Zhu, Zheng & Qin, Xiaoran & Ke, Jintao & Zheng, Zhengfei & Yang, Hai, 2020. "Analysis of multi-modal commute behavior with feeding and competing ridesplitting services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 713-727.
    9. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
    10. Arthur Mahéo & Philip Kilby & Pascal Van Hentenryck, 2019. "Benders Decomposition for the Design of a Hub and Shuttle Public Transit System," Service Science, INFORMS, vol. 53(1), pages 77-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    2. Rossana Cavagnini & Valentina Morandi, 2021. "Implementing Horizontal Cooperation in Public Transport and Parcel Deliveries: The Cooperative Share-A-Ride Problem," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    3. MELIS, Lissa & SÖRENSEN, Kenneth, 2021. "The real-time on-demand bus routing problem: What is the cost of dynamic requests?," Working Papers 2021003, University of Antwerp, Faculty of Business and Economics.
    4. Cortina, Mélanie & Chiabaut, Nicolas & Leclercq, Ludovic, 2023. "Fostering synergy between transit and Autonomous Mobility-on-Demand systems: A dynamic modeling approach for the morning commute problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    5. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    6. Molenbruch, Yves & Braekers, Kris & Hirsch, Patrick & Oberscheider, Marco, 2021. "Analyzing the benefits of an integrated mobility system using a matheuristic routing algorithm," European Journal of Operational Research, Elsevier, vol. 290(1), pages 81-98.
    7. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    8. Babak Mehran & Yongzhe Yang & Sushreeta Mishra, 2020. "Analytical models for comparing operational costs of regular bus and semi-flexible transit services," Public Transport, Springer, vol. 12(1), pages 147-169, March.
    9. Kumar, Pramesh & Khani, Alireza, 2022. "Planning of integrated mobility-on-demand and urban transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 499-521.
    10. Eloy Solis & Kayvan Karimi & Irene Garcia & Inmaculada Mohino, 2022. "Knowledge Economy Clustering at the Intrametropolitan Level: Evidence from Madrid," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 1268-1299, June.
    11. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    12. Yanchun Yi & Sisi Ma & Weijun Guan & Ke Li, 2017. "An Empirical Study on the Relationship between Urban Spatial Form and CO 2 in Chinese Cities," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    13. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    14. Franco, Patrizia & Johnston, Ryan & McCormick, Ecaterina, 2020. "Demand responsive transport: Generation of activity patterns from mobile phone network data to support the operation of new mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 244-266.
    15. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
    16. Alain Thierstein & Stefan Lüthi, 2012. "Interlocking Firm Networks in the German Knowledge Economy: The Case of the Emerging Mega-city Region of Munich," Chapters, in: Marina van Geenhuizen & Peter Nijkamp (ed.), Creative Knowledge Cities, chapter 13, Edward Elgar Publishing.
    17. Ke, Jintao & Li, Xinwei & Yang, Hai & Yin, Yafeng, 2021. "Pareto-efficient solutions and regulations of congested ride-sourcing markets with heterogeneous demand and supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    18. Dessouky, Maged M & Hu, Shichun, 2021. "Dynamic Routing for Ride-Sharing," Institute of Transportation Studies, Working Paper Series qt6qq8r7hz, Institute of Transportation Studies, UC Davis.
    19. Mingshu Wang, 2021. "Polycentric urban development and urban amenities: Evidence from Chinese cities," Environment and Planning B, , vol. 48(3), pages 400-416, March.
    20. Alessandro Hill & Roberto Baldacci & Edna Ayako Hoshino, 2019. "Capacitated ring arborescence problems with profits," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 357-389, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2021004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.