IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v15y2023i3d10.1007_s12469-023-00325-8.html
   My bibliography  Save this article

Effect of stochastic vehicle arrival and passenger demand on semi-flexible transit design

Author

Listed:
  • Sushreeta Mishra

    (University of Manitoba)

  • Babak Mehran

    (University of Manitoba)

Abstract

Semi-flexible transit (SFT) is commonly discussed as a cost-effective alternative to serving public transportation users in low-demand conditions. Despite its considerable potential, the implementation of SFT is limited due to two primary operating challenges: (a) fluctuating travel demand and (b) service unreliability. Most researchers recently are rigorously involved in developing complex algorithms and heuristics to handle operational planning issues, while very few focus on the optimization of variables for SFT operations involving tactical decision making. Moreover, the optimization of decision variables is largely based on a single dimension of stochasticity, demand only. The present study proposes a methodology to optimize two decision variables, service headway and the proportion of requests accepted for curb-to-curb service per trip while operating SFT following a route-deviation operating policy. Implementing stochasticity in both demand and vehicle arrival, we perform multi-objective optimization with two conflicting objectives as minimization of operator cost and user cost. Pertaining to vehicle delays and demand variability linked to values of decision variables in the Pareto set, we define the risks associated with selecting each value for attaining Pareto optimality. The risk is proportionate to the occurrence of a decision variable value in the Pareto set. The study methodology can be adopted as a decision support tool to establish planning policies to optimize SFT operation while considering the interests of both the operator and the user.

Suggested Citation

  • Sushreeta Mishra & Babak Mehran, 2023. "Effect of stochastic vehicle arrival and passenger demand on semi-flexible transit design," Public Transport, Springer, vol. 15(3), pages 721-745, October.
  • Handle: RePEc:spr:pubtra:v:15:y:2023:i:3:d:10.1007_s12469-023-00325-8
    DOI: 10.1007/s12469-023-00325-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-023-00325-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-023-00325-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    2. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    3. Babak Mehran & Yongzhe Yang & Sushreeta Mishra, 2020. "Analytical models for comparing operational costs of regular bus and semi-flexible transit services," Public Transport, Springer, vol. 12(1), pages 147-169, March.
    4. Davison, Lisa & Enoch, Marcus & Ryley, Tim & Quddus, Mohammed & Wang, Chao, 2014. "A survey of Demand Responsive Transport in Great Britain," Transport Policy, Elsevier, vol. 31(C), pages 47-54.
    5. Mohammad Ansari Esfeh & S. C. Wirasinghe & Saeid Saidi & Lina Kattan, 2021. "Waiting time and headway modelling for urban transit systems – a critical review and proposed approach," Transport Reviews, Taylor & Francis Journals, vol. 41(2), pages 141-163, March.
    6. Fausto Errico & Teodor Gabriel Crainic & Federico Malucelli & Maddalena Nonato, 2021. "The Single-Line Design Problem for Demand-Adaptive Transit Systems: A Modeling Framework and Decomposition Approach for the Stationary-Demand Case," Transportation Science, INFORMS, vol. 55(6), pages 1300-1321, November.
    7. (Edward) Kim, Myungseob & Levy, Joshua & Schonfeld, Paul, 2019. "Optimal zone sizes and headways for flexible-route bus services," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 67-81.
    8. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    2. Schulz, Arne & Pfeiffer, Christian, 2024. "Using fixed paths to improve branch-and-cut algorithms for precedence-constrained routing problems," European Journal of Operational Research, Elsevier, vol. 312(2), pages 456-472.
    3. Mishra, Sushreeta & Mehran, Babak & Sahu, Prasanta K., 2020. "Assessment of delivery models for semi-flexible transit operation in low-demand conditions," Transport Policy, Elsevier, vol. 99(C), pages 275-287.
    4. Haiyan Yu & Xianwei Luo & Tengyu Wu, 0. "Online pickup and delivery problem with constrained capacity to minimize latency," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-20.
    5. Haiyan Yu & Xianwei Luo & Tengyu Wu, 2022. "Online pickup and delivery problem with constrained capacity to minimize latency," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 974-993, July.
    6. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    7. Xudong Li & Zhongzhen Yang & Feng Lian, 2023. "Optimizing On-Demand Bus Services for Remote Areas," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    8. Ma, Jiaxin & Chen, Xumei & Xing, Ziwen & Zhang, Yixin & Yu, Lei, 2023. "Improving the performance of airport shuttle through demand-responsive service with dynamic fare strategy considering mixed demand," Journal of Air Transport Management, Elsevier, vol. 112(C).
    9. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    10. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    11. Pandey, Ayush & Lehe, Lewis J., 2024. "Congestive mode-switching and economies of scale on a bus route," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    12. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2021. "Zonal-based flexible bus service under elastic stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    13. Gaul, Daniela & Klamroth, Kathrin & Stiglmayr, Michael, 2022. "Event-based MILP models for ridepooling applications," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1048-1063.
    14. Ge, Qian & Han, Ke & Liu, Xiaobo, 2021. "Matching and routing for shared autonomous vehicles in congestible network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    15. Tafreshian, Amirmahdi & Abdolmaleki, Mojtaba & Masoud, Neda & Wang, Huizhu, 2021. "Proactive shuttle dispatching in large-scale dynamic dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 227-259.
    16. Tianxing Dai & Brian D. Taylor, 2023. "Three’s a crowd? Examining evolving public transit crowding standards amidst the COVID-19 pandemic," Public Transport, Springer, vol. 15(2), pages 321-341, June.
    17. Russo, Antonio & Adler, Martin W. & Liberini, Federica & van Ommeren, Jos N., 2021. "Welfare losses of road congestion: Evidence from Rome," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    18. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    19. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    20. Zhou, Yuyang & Wang, Peiyu & Zheng, Shuyan & Zhao, Minhe & Lam, William H.K. & Chen, Anthony & Sze, N.N. & Chen, Yanyan, 2024. "Modeling dynamic travel mode choices using cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:15:y:2023:i:3:d:10.1007_s12469-023-00325-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.