IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v196y2025ics0965856425001016.html
   My bibliography  Save this article

On-demand transportation system for cross-state abortion travel: A dual dial-a-ride problem

Author

Listed:
  • Zang, Zhaoqi
  • Tian, Qingyun
  • Wang, David Z.W.

Abstract

After the Supreme Court of the United States officially overturned Roe v. Wade, there is no longer a guarantee of a constitutional right to abortion in the United States. Academic communities show great concern for this situation; specifically, Nature, Science and leading medical journals expressed deep concern over this verdict. Revoking this verdict, at least in a short term, is impossible. Therefore, for individuals residing in states where abortion is banned, cross-state abortion may be the only option if they want to access abortion services. To shed light on removing the transportation barrier of cross-state abortion travel, this paper aims to design an on-demand transportation service system to provide a timely and cost-effective mode of transportation. Specifically, we firstly formulate cross-state abortion transportation as a Dual Dial-a-Ride Problem (D-DARP) with safe driving constraints to minimize total transportation costs. In the proposed model, “dual” means completing both pickup and delivery tasks before and after the abortion service appointment for each request. The safe driving constraints are considered by setting a maximum driving time limit beyond which the carrying vehicles must stop for passengers to have a rest for refreshment, food, restroom breaks, or other health-related needs. To solve the proposed model, we develop a Tabu Search algorithm. Two datasets are used in numerical experiments to demonstrate the validity and effectiveness of the proposed model and its solution algorithm.

Suggested Citation

  • Zang, Zhaoqi & Tian, Qingyun & Wang, David Z.W., 2025. "On-demand transportation system for cross-state abortion travel: A dual dial-a-ride problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:transa:v:196:y:2025:i:c:s0965856425001016
    DOI: 10.1016/j.tra.2025.104473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856425001016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2025.104473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    2. Sarah Miller & Laura R. Wherry & Diana Greene Foster, 2023. "The Economic Consequences of Being Denied an Abortion," American Economic Journal: Economic Policy, American Economic Association, vol. 15(1), pages 394-437, February.
    3. Detti, Paolo & Papalini, Francesco & Lara, Garazi Zabalo Manrique de, 2017. "A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare," Omega, Elsevier, vol. 70(C), pages 1-14.
    4. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    5. Marcus Posada & Henrik Andersson & Carl H. Häll, 2017. "The integrated dial-a-ride problem with timetabled fixed route service," Public Transport, Springer, vol. 9(1), pages 217-241, July.
    6. Paul Czioska & Ronny Kutadinata & Aleksandar Trifunović & Stephan Winter & Monika Sester & Bernhard Friedrich, 2019. "Real-world meeting points for shared demand-responsive transportation systems," Public Transport, Springer, vol. 11(2), pages 341-377, August.
    7. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    8. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    9. Aravind, Avani & Venthuruthiyil, Suvin P. & Mishra, Sabyasachee, 2024. "Equity and accessibility assessment of fixed route transit systems integrated with on-demand feeder services," Journal of Transport Geography, Elsevier, vol. 121(C).
    10. Zang, Zhaoqi & Xu, Xiangdong & Yang, Chao & Chen, Anthony, 2018. "A closed-form estimation of the travel time percentile function for characterizing travel time reliability," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 228-247.
    11. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 14(2), pages 130-154, May.
    13. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    14. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    15. Emanuel Melachrinoudis & Hokey Min, 2011. "A tabu search heuristic for solving the multi-depot, multi-vehicle, double request dial-a-ride problem faced by a healthcare organisation," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 10(2), pages 214-239.
    16. Jean-François Cordeau, 2006. "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem," Operations Research, INFORMS, vol. 54(3), pages 573-586, June.
    17. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    18. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Operational effects of service level variations for the dial-a-ride problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 71-90, March.
    19. Rachel K Jones & Jenna Jerman, 2017. "Characteristics and Circumstances of U.S. Women Who Obtain Very Early and Second-Trimester Abortions," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-15, January.
    20. Reinhardt, Line Blander & Clausen, Tommy & Pisinger, David, 2013. "Synchronized dial-a-ride transportation of disabled passengers at airports," European Journal of Operational Research, Elsevier, vol. 225(1), pages 106-117.
    21. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    22. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    23. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    24. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    2. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    3. Johnsen, Lennart C. & Meisel, Frank, 2022. "Interrelated trips in the rural dial-a-ride problem with autonomous vehicles," European Journal of Operational Research, Elsevier, vol. 303(1), pages 201-219.
    4. Su, Yue & Dupin, Nicolas & Puchinger, Jakob, 2023. "A deterministic annealing local search for the electric autonomous dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1091-1111.
    5. Gaul, Daniela & Klamroth, Kathrin & Stiglmayr, Michael, 2022. "Event-based MILP models for ridepooling applications," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1048-1063.
    6. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    7. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    8. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    9. Zhang, Li & Liu, Zhongshan & Yu, Bin & Long, Jiancheng, 2024. "A ridesharing routing problem for airport riders with electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    10. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    11. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    12. Molenbruch, Yves & Braekers, Kris & Hirsch, Patrick & Oberscheider, Marco, 2021. "Analyzing the benefits of an integrated mobility system using a matheuristic routing algorithm," European Journal of Operational Research, Elsevier, vol. 290(1), pages 81-98.
    13. Mohamed Amine Masmoudi & Manar Hosny & Emrah Demir & Erwin Pesch, 2020. "Hybrid adaptive large neighborhood search algorithm for the mixed fleet heterogeneous dial-a-ride problem," Journal of Heuristics, Springer, vol. 26(1), pages 83-118, February.
    14. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    15. Rossana Cavagnini & Valentina Morandi, 2021. "Implementing Horizontal Cooperation in Public Transport and Parcel Deliveries: The Cooperative Share-A-Ride Problem," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    16. Goeke, Dominik, 2019. "Granular tabu search for the pickup and delivery problem with time windows and electric vehicles," European Journal of Operational Research, Elsevier, vol. 278(3), pages 821-836.
    17. Rahman, Md Hishamur & Chen, Shijie & Sun, Yanshuo & Siddiqui, Muhammad Imran Younus & Mohebbi, Matthew & Marković, Nikola, 2023. "Integrating dial-a-ride with transportation network companies for cost efficiency: A Maryland case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    18. Dong, Huichang & Luo, Zhixing & Huang, Nan & Hu, Hongjian & Qin, Hu, 2025. "The electric vehicle dial-a-ride problem: Integrating ride-sharing and time-of-use electricity pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    19. Ertan Yakıcı & Robert F. Dell & Travis Hartman & Connor McLemore, 2018. "Daily aircraft routing for amphibious ready groups," Annals of Operations Research, Springer, vol. 264(1), pages 477-498, May.
    20. Sonia Nasri & Hend Bouziri & Wassila Aggoune-Mtalaa, 2022. "An Evolutionary Descent Algorithm for Customer-Oriented Mobility-On-Demand Problems," Sustainability, MDPI, vol. 14(5), pages 1-18, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:196:y:2025:i:c:s0965856425001016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.