IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p3020-d764263.html
   My bibliography  Save this article

An Evolutionary Descent Algorithm for Customer-Oriented Mobility-On-Demand Problems

Author

Listed:
  • Sonia Nasri

    (LARODEC Laboratory, Business Higher School of Tunis, Manouba University, Manouba 2010, Tunisia)

  • Hend Bouziri

    (LARODEC Laboratory, Higher School of Economics and Business, Tunis University, Tunis 1002, Tunisia)

  • Wassila Aggoune-Mtalaa

    (Luxembourg Institute of Science and Technology, L-4362 Esch-sur-Alzette, Luxembourg)

Abstract

This paper is addressing a new class of on-demand transport problems oriented toward customers. A mixed-integer linear programming model is proposed with new effective constraints that contribute to enhancing the quality of service. An exact resolution has been achieved, leading to lower bounds of the solution space of real cases of on-demand transport problems. To overcome the exponential computational time of the exact resolution, an evolutionary descent method is developed. It relies on a new operator for perturbing the search. The comparative results between the new method and the branch and bound show low gaps for almost all the instances tested with lower execution times. The results of the evolutionary descent method are also compared with the results of two different heuristics, namely a Tabu Search and an Evolutionary Local Search. Our evolutionary method demonstrates its effectiveness through competitive and promising results.

Suggested Citation

  • Sonia Nasri & Hend Bouziri & Wassila Aggoune-Mtalaa, 2022. "An Evolutionary Descent Algorithm for Customer-Oriented Mobility-On-Demand Problems," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3020-:d:764263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/3020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/3020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Sun & Ming Wei & Chunfeng Yang & Zhihuo Xu & Han Wang, 2018. "Personalised and Coordinated Demand-Responsive Feeder Transit Service Design: A Genetic Algorithms Approach," Future Internet, MDPI, vol. 10(7), pages 1-14, July.
    2. Detti, Paolo & Papalini, Francesco & Lara, Garazi Zabalo Manrique de, 2017. "A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare," Omega, Elsevier, vol. 70(C), pages 1-14.
    3. Braekers, Kris & Kovacs, Attila A., 2016. "A multi-period dial-a-ride problem with driver consistency," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 355-377.
    4. Healy, Patrick & Moll, Robert, 1995. "A new extension of local search applied to the Dial-A-Ride Problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 83-104, May.
    5. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
    6. Hyland, Michael & Mahmassani, Hani S., 2020. "Operational benefits and challenges of shared-ride automated mobility-on-demand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 251-270.
    7. Fabien Lehuédé & Renaud Masson & Sophie N Parragh & Olivier Péton & Fabien Tricoire, 2014. "A multi-criteria large neighbourhood search for the transportation of disabled people," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(7), pages 983-1000, July.
    8. Molenbruch, Yves & Braekers, Kris & Caris, An, 2017. "Benefits of horizontal cooperation in dial-a-ride services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 97-119.
    9. R M Jorgensen & J Larsen & K B Bergvinsdottir, 2007. "Solving the Dial-a-Ride problem using genetic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1321-1331, October.
    10. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    11. Emanuel Melachrinoudis & Hokey Min, 2011. "A tabu search heuristic for solving the multi-depot, multi-vehicle, double request dial-a-ride problem faced by a healthcare organisation," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 10(2), pages 214-239.
    12. Vij, Akshay & Ryan, Stacey & Sampson, Spring & Harris, Susan, 2020. "Consumer preferences for on-demand transport in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 823-839.
    13. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    14. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Operational effects of service level variations for the dial-a-ride problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 71-90, March.
    15. Julie Paquette & François Bellavance & Jean-François Cordeau & Gilbert Laporte, 2012. "Measuring quality of service in dial-a-ride operations: the case of a Canadian city," Transportation, Springer, vol. 39(3), pages 539-564, May.
    16. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    2. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    3. Rossana Cavagnini & Valentina Morandi, 2021. "Implementing Horizontal Cooperation in Public Transport and Parcel Deliveries: The Cooperative Share-A-Ride Problem," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    4. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    5. Gaul, Daniela & Klamroth, Kathrin & Stiglmayr, Michael, 2022. "Event-based MILP models for ridepooling applications," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1048-1063.
    6. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    7. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    8. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    9. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    10. Ertan Yakıcı & Robert F. Dell & Travis Hartman & Connor McLemore, 2018. "Daily aircraft routing for amphibious ready groups," Annals of Operations Research, Springer, vol. 264(1), pages 477-498, May.
    11. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    12. Braekers, Kris & Kovacs, Attila A., 2016. "A multi-period dial-a-ride problem with driver consistency," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 355-377.
    13. Schilde, M. & Doerner, K.F. & Hartl, R.F., 2014. "Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 18-30.
    14. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    15. Tafreshian, Amirmahdi & Abdolmaleki, Mojtaba & Masoud, Neda & Wang, Huizhu, 2021. "Proactive shuttle dispatching in large-scale dynamic dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 227-259.
    16. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    17. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.
    18. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    19. Chane-Haï Timothée & Vercraene Samuel & Monteiro Thibaud, 2023. "The assignment-dial-a-ride-problem," Health Care Management Science, Springer, vol. 26(4), pages 770-784, December.
    20. Li, Chongshou & Gong, Lijun & Luo, Zhixing & Lim, Andrew, 2019. "A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing," Omega, Elsevier, vol. 89(C), pages 71-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3020-:d:764263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.