IDEAS home Printed from https://ideas.repec.org/p/ags/ugeocr/96032.html
   My bibliography  Save this paper

Dynamic Optimization of Nitrogen Use in Agriculture

Author

Listed:
  • Burnett, J. Wesley
  • Ferrer, Myra Clarisse R.

Abstract

Agricultural production is highly dependent on inorganic substances including fertilizers. High-yielding crop varieties, such as corn, require large amounts of primary nutrients including nitrogen, phosphorus and potassium. Farmers often add a surplus of nutrients to crops to maximize yields. Utilization of primary nutrients has increased by more than 300% while that of nitrogen alone has increased by more than 600% between 1960 and 2007 (USDA, 2009). From 1964 to 2007, the use of nitrogen in the corn sector alone increased from 1,623,000 to 5,714,000 nutrient tons (USDA, 2009). While increasing production, increased fertilizer use can potentially create negative externalities in the form of nitrate-nitrogen contamination in groundwater. Groundwater is the source of drinking water for about half the total U.S. population and nearly all of the rural population, and it provides over 50 billion gallons per day for agricultural needs (USGS, 2009). In the U.S. the main source of nitrate pollution in the groundwater results from the actions of farmers through the use of fertilizers and other chemicals (Haller, et al. 2009). Nitrogen-nitrate contamination can have adverse human affects including methemoglobinemia or ―blue-baby‖ syndrome (Majumdar, 2003). The potential for nitrate contamination in corn production is especially problematic as corn alone accounts for over 90% of feed grains produced in the U.S. (USDA, 2009). The USDA estimates that approximately 80 million acres of land is planted to corn, with the majority in the Heartland region (the Midwest) of the U.S. (2009). The Heartland region is primarily rural and much of the population there derives its drinking water from groundwater. Therefore, the potential for groundwater contamination is greatly increased in this region.

Suggested Citation

  • Burnett, J. Wesley & Ferrer, Myra Clarisse R., 2010. "Dynamic Optimization of Nitrogen Use in Agriculture," Faculty Series 96032, University of Georgia, Department of Agricultural and Applied Economics.
  • Handle: RePEc:ags:ugeocr:96032
    DOI: 10.22004/ag.econ.96032
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/96032/files/Dynamic_Optimizationc.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.96032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Satya N. Yadav, 1997. "Dynamic Optimization of Nitrogen Use When Groundwater Contamination Is Internalized at the Standard in the Long Run," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 931-945.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hubert Stahn & Agnès Tomini, 2014. "On the Environmental Efficiency of Water Storage: The Case of a Conjunctive Use of Ground and Rainwater," AMSE Working Papers 1452, Aix-Marseille School of Economics, France.
    2. Baerenklau, Kenneth A. & Nergis, Nermin & Schwabe, Kurt A., 2007. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural Model," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 10253, Western Agricultural Economics Association.
    3. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    4. Alassane DRABO, 2010. "Interrelationships between Health, Environment Quality and Economic Activity: What Consequences for Economic Convergence," Working Papers 201005, CERDI.
    5. Farquharson, Robert J. & Cacho, Oscar J. & Mullen, John D., 2005. "An economic approach to soil fertility management for wheat production in New South Wales and Queensland," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137866, Australian Agricultural and Resource Economics Society.
    6. Roseta-Palma, Catarina, 2002. "Groundwater Management When Water Quality Is Endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 93-105, July.
    7. Goetz, Renan-Ulrich & Keusch, Alois, 2005. "Dynamic efficiency of soil erosion and phosphor reduction policies combining economic and biophysical models," Ecological Economics, Elsevier, vol. 52(2), pages 201-218, January.
    8. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    9. Yang, Ziyan, 2015. "A Dynamic Economic Analysis of Nitrogen-Induced Soil Acidification in China," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205112, Agricultural and Applied Economics Association.
    10. Sanchari Ghosh & Keith Willett, 2012. "Empirical Assessment of the quantity-quality tradeoff for the Ogallala: A case study from West Texas," Economics Working Paper Series 1201, Oklahoma State University, Department of Economics and Legal Studies in Business.
    11. Catarina Roseta-Palma, 2003. "Joint Quantity/Quality Management of Groundwater," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 89-106, September.
    12. Van Asselt, Joanna & Grogan, Kelly A., 2020. "Do Fertilizer Subsidies Improve Soil Quality: Myopic vs. Dynamic Analysis of Smallholder Farmers in Ghana," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304546, Agricultural and Applied Economics Association.
    13. Alassane Drabo, 2010. "Environment Quality and Economic Convergence: Extending Environmental Kuznets Curve Hypothesis," Economics Bulletin, AccessEcon, vol. 30(2), pages 1617-1632.
    14. Yusuke Kuwayama & Nicholas Brozović, 2017. "Optimal Management of Environmental Externalities with Time Lags and Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 473-499, November.
    15. Alassane Drabo, 2011. "Interrelationships among Health, Environment Quality, and Economic Activity: What Consequences for Economic Convergence?," WIDER Working Paper Series wp-2011-034, World Institute for Development Economic Research (UNU-WIDER).
    16. Farquharson, Robert J. & Cacho, Oscar J. & Turpin, J.E., 2000. "Agricultural response analysis in a longer term framework," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123634, Australian Agricultural and Resource Economics Society.
    17. Encarna Esteban & Ariel Dinar, 2013. "Cooperative Management of Groundwater Resources in the Presence of Environmental Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 443-469, March.
    18. Dias, Weeratilake & Helmers, Glenn A. & Eghball, Bahman, 1999. "Economic And Environmental Risk Efficiency Analysis Of Land Application Of Cattle Feedlot Manure: Generalized Stochastic Dominance Analysis," 1999 Annual Meeting, July 11-14, 1999, Fargo, ND 35715, Western Agricultural Economics Association.
    19. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    20. Kenneth A. Baerenklau & Nermin Nergis & Kurt A. Schwabe, 2008. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural‐Dynamic Model," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 56(2), pages 219-241, June.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ugeocr:96032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/daugaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.