IDEAS home Printed from https://ideas.repec.org/p/ags/iafepa/333731.html
   My bibliography  Save this paper

Expected Utility and Prospect Theories Versus Agricultural Insurance

Author

Listed:
  • Kulawik, Jacek

Abstract

Teoria/hipoteza użyteczności oczekiwanej (ang. the expected utility theory, EUT lub ET) von Neumanna i Morgensterna już w momencie zaprezentowania jej kompletnej, aksjomatycznej formy (1953 r.) stała się przedmiotem krytyki oraz wysiłków, by ją „ulepszyć”. Najszerszą analizę przeprowadzili Kahneman i Tversky za pomocą stworzonej przez siebie teorii perspektywy (the prospect theory, PT). Nie była to jednakże konstrukcja dopracowana. Z pomocą powyższej dwójce przyszedł w 1982 r. Quiggin ze swoim rozszerzeniem EUT w postaci rank dependent expected utility (RDEU). W ślad za tym Kahneman i Tversky w 1992 r. mogli pochwalić się drugą wersją teorii perspektywy, tj. postacią skumulowaną (CPT). To ona właśnie stała się najbardziej konkurencyjną propozycją wobec EUT, mimo że w późniejszych latach inni badacze dodali do niej nowe elementy. W ten sposób powstawały kolejne generacje PT. Dziś jest ich w sumie pięć. Jak zwykle, szybko okazało się, że PT także niezadowalająco objaśnia różne przypadki podejmowania decyzji w warunkach ryzyka i niepewności. Po dokładniejszej analizie okazało się jednak, że PT jest w istocie generalizacją EUT. Obydwie te teorie są m.in. narzędziem modelowania decyzji ubezpieczeniowych, w tym także w rolnictwie. W tym kontekście podstawowym celem artykułu jest bliższe przedstawienie zasad oraz uzyskiwanych rezultatów ich stosowania w ubezpieczeniach rolnych. Z dokonanej analizy wynika, że pragmatycznym rozwiązaniem obecnie jest łączne wykorzystywanie obydwu teorii, przy czym EUT zazwyczaj powinna być punktem odniesienia. The expected utility theory/hypothesis (EUT/ET) by von Neumann and Morgenstern has become the subject of criticism and efforts to improve it already at the moment of presenting its complete axiomatic form (1953). The broadest analysis was carried out by Kahneman and Tversky using the prospect theory (PT). However, it was not carefully prepared. The above two were helped in 1982 by Quiggin with his extension of the EUT in the form of the rank-dependent expected utility (RDEU). This was followed by Kahneman and Tversky in 1992 boasted the second version of the prospect theory, i.e., the cumulative prospect theory (CPT). It became the most competitive proposal to the EUT, although later other researchers added new elements to it. In this way, the subsequent generations of the PT were created. Today there are five in total. It soon became apparent that the PT also did not satisfactorily explain various cases of decision-making under conditions of risk and uncertainty. Upon closer analysis, however, it turned out that the PT was in fact a generalization of the EUT. Both theories are tools for modeling insurance decisions, including agriculture. In this context, the main aim of the article is to present the principles and the results of applying them in agricultural insurance. The analysis shows that the pragmatic solution at present is the combined use of both theories, with the EUT usually being the reference point.

Suggested Citation

  • Kulawik, Jacek, 2023. "Expected Utility and Prospect Theories Versus Agricultural Insurance," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 333731, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
  • Handle: RePEc:ags:iafepa:333731
    DOI: 10.22004/ag.econ.333731
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/333731/files/pdf-161811-88771.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.333731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alan P. Ker & Barry Barnett & David Jacques & Tor Tolhurst, 2017. "Canadian Business Risk Management: Private Firms, Crown Corporations, and Public Institutions," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 65(4), pages 591-612, December.
    2. Vincent H. Smith & Barry K. Goodwin, 1995. "The Economics of Crop Insurance and Disaster Aid," Books, American Enterprise Institute, number 53374, September.
    3. Barry Barnett, 2014. "Multiple-peril crop insurance: successes and challenges," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 74(2), pages 200-216, July.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. Michał Lewandowski, 2017. "Prospect Theory Versus Expected Utility Theory: Assumptions, Predictions, Intuition and Modelling of Risk Attitudes," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(4), pages 275-321, December.
    6. Cao, Ying (Jessica) & Weersink, Alfons & Ferner, Emma, 2020. "A Risk Management Tool or an Investment Strategy? Understanding the Unstable Farm Insurance Demand via a Gain-Loss Framework," Agricultural and Resource Economics Review, Cambridge University Press, vol. 49(3), pages 410-436, December.
    7. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    8. Barry Barnett, 2014. "Multiple-peril crop insurance: successes and challenges," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 74(2), pages 200-216, July.
    9. Dhami, Sanjit, 2016. "The Foundations of Behavioral Economic Analysis," OUP Catalogue, Oxford University Press, number 9780198715535.
    10. Charles B Moss, 2010. "Risk, Uncertainty and the Agricultural Firm," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7469, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kulawik Jacek, 2023. "Expected Utility and Prospect Theories Versus Agricultural Insurance," Zagadnienia Ekonomiki Rolnej / Problems of Agricultural Economics, Sciendo, vol. 374(1), pages 62-84, March.
    2. Yong Liu & A. Ford Ramsey, 2023. "Incorporating historical weather information in crop insurance rating," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(2), pages 546-575, March.
    3. Markus Dertwinkel-Kalt & Jonas Frey, 2020. "Optimal Stopping in a Dynamic Salience Model," CESifo Working Paper Series 8496, CESifo.
    4. Kpegli, Yao Thibaut & Corgnet, Brice & Zylbersztejn, Adam, 2023. "All at once! A comprehensive and tractable semi-parametric method to elicit prospect theory components," Journal of Mathematical Economics, Elsevier, vol. 104(C).
    5. Sanjit Dhami & Ali al-Nowaihi, 2018. "Rationality in Economics: Theory and Evidence," CESifo Working Paper Series 6872, CESifo.
    6. Belianin, A., 2017. "Face to Face to Human Being: Achievements and Challenges of Behavioral Economics," Journal of the New Economic Association, New Economic Association, vol. 34(2), pages 166-175.
    7. Ali al-Nowaihi & Sanjit Dhami & Mengxing Wei, 2018. "Quantum Decision Theory and the Ellsberg Paradox," CESifo Working Paper Series 7158, CESifo.
    8. Herweg, Fabian & Müller, Daniel, 2021. "A comparison of regret theory and salience theory for decisions under risk," Journal of Economic Theory, Elsevier, vol. 193(C).
    9. Markus Dertwinkel‐Kalt & Jonas Frey, 2024. "Optimal Stopping In A Dynamic Salience Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(2), pages 885-913, May.
    10. Mark Schneider, 2019. "A Bias Aggregation Theorem," Working Papers 19-03, Chapman University, Economic Science Institute.
    11. Castro, Luciano de & Galvao, Antonio F. & Kim, Jeong Yeol & Montes-Rojas, Gabriel & Olmo, Jose, 2022. "Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 97(C).
    12. Itzhak Gilboa & Andrew Postlewaite & Larry Samuelson & David Schmeidler, 2019. "What are axiomatizations good for?," Theory and Decision, Springer, vol. 86(3), pages 339-359, May.
    13. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Serrao, Amilcar & Coelho, Luis, 2004. "Cumulative Prospect Theory: A Study Of The Farmers' Decision Behavior In The Alentejo Dryland Region Of Portugal," 2004 Annual meeting, August 1-4, Denver, CO 20245, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Christian Gollier & James Hammitt & Nicolas Treich, 2013. "Risk and choice: A research saga," Journal of Risk and Uncertainty, Springer, vol. 47(2), pages 129-145, October.
    16. Simone Cerreia‐Vioglio & David Dillenberger & Pietro Ortoleva, 2015. "Cautious Expected Utility and the Certainty Effect," Econometrica, Econometric Society, vol. 83, pages 693-728, March.
    17. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    18. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    19. Xue Dong He & Sang Hu & Jan Obłój & Xun Yu Zhou, 2017. "Technical Note—Path-Dependent and Randomized Strategies in Barberis’ Casino Gambling Model," Operations Research, INFORMS, vol. 65(1), pages 97-103, February.
    20. Yaron Azrieli & Christopher P. Chambers & Paul J. Healy, 2020. "Incentives in experiments with objective lotteries," Experimental Economics, Springer;Economic Science Association, vol. 23(1), pages 1-29, March.

    More about this item

    Keywords

    Agricultural Finance; Financial Economics; Risk and Uncertainty;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iafepa:333731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ierigpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.