IDEAS home Printed from https://ideas.repec.org/p/ags/gewi18/275894.html
   My bibliography  Save this paper

Der Wettbewerb Um Rohmilch In Deutschland: Hat Das Bundeskartellamt Recht?

Author

Listed:
  • Petersen, Julian
  • Hess, Sebastian

Abstract

Der deutsche Milchsektor ist möglicherweise durch einen eingeschränkten Wettbewerb um Rohmilch gekennzeichnet. Dies könnte ein Wettbewerbsnachteil für Landwirte gegenüber Molkereien sein. Neben der Diskussion um die vollständige Andienungspflicht bei Abnahmegarantie werden auch die Kündigungsfristen, zu denen Landwirte eine Molkerei verlassen können, immer wieder mit der Entstehung von Markterschließungseffekten in Verbindung gebracht. Die Milchauszahlungspreise, welche Landwirte im Jahr 2015 einschließlich aller Zuschläge erhalten haben, werden dazu in einem räumlichen ökonometrischen Modell durch strukturelle Merkmale des landwirtschaftlichen Betriebs und der regionalen Wettbewerbssituation um Rohmilch erklärt. Es zeigt sich ein negativer Zusammenhang zwischen Milchauszahlungspreis und Kündigungsfrist, d.h. Landwirte mit längeren Kündigungsfristen müssen eventuell unterdurchschnittliche Auszahlungspreise akzeptieren. Die jüngste Kritik des Bundeskartellamtes wird hierdurch grundsätzlich gestützt.

Suggested Citation

  • Petersen, Julian & Hess, Sebastian, 2018. "Der Wettbewerb Um Rohmilch In Deutschland: Hat Das Bundeskartellamt Recht?," 58th Annual Conference, Kiel, Germany, September 12-14, 2018 275894, German Association of Agricultural Economists (GEWISOLA).
  • Handle: RePEc:ags:gewi18:275894
    DOI: 10.22004/ag.econ.275894
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/275894/files/Der%20Wettbewerb%20um%20Rohmilch%20in%20Deutschland-Hat%20das%20Bundeskartellamt%20Recht.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.275894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    4. Schlecht, Stephanie & Steffen, Nina & Spiller, Achim, 2013. "Vertragsmanagement in Molkereien nach Auslaufen der Milchquotenregelung," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 62(1).
    5. Zavelberg, Yvonne & Heckelei, Thomas & Wieck, Christine, 2016. "Entry deterring effects of contractual relations in the dairy processing sector," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 5(1), pages 1-16, April.
    6. Schlecht, Stephanie & Steffen, Nina & Spiller, Achim, 2013. "Vertragsmanagement in Molkereien nach Auslaufen der Milchquotenregelung," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 62(01), pages 1-17, February.
    7. Petersen, Julian & Hess, Sebastian, 2017. "Gegenwart und Zukunft der Milch-Lieferbeziehungen aus Sicht Deutscher Landwirte," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 262149, German Association of Agricultural Economists (GEWISOLA).
    8. Spiller Achim & Steffen Nina & Schlecht Stephanie, 2010. "Preisbildung im genossenschaftlichen System am Beispiel der Milchwirtschaft," Zeitschrift für das gesamte Genossenschaftswesen, De Gruyter, vol. 60(3), pages 206-220, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petersen, Julian & Hess, Sebastian, 2018. "Die Zukunft der Milch-Lieferbeziehungen aus Sicht deutscher Landwirte," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 67(2), June.
    2. Christopher Higgins & Pavlos Kanaroglou, 2018. "Rapid transit, transit-oriented development, and the contextual sensitivity of land value uplift in Toronto," Urban Studies, Urban Studies Journal Limited, vol. 55(10), pages 2197-2225, August.
    3. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    4. David M. Cutler & J. Travis Donahoe, 2024. "Thick Market Externalities and the Persistence of the Opioid Epidemic," NBER Working Papers 32055, National Bureau of Economic Research, Inc.
    5. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    6. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    7. Jörg Breitung & Christoph Wigger, 2018. "Alternative GMM estimators for spatial regression models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(2), pages 148-170, April.
    8. Patrick S. Ward & Valerien O. Pede, 2015. "Capturing social network effects in technology adoption: the spatial diffusion of hybrid rice in Bangladesh," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), pages 225-241, April.
    9. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    10. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    11. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    12. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    13. Borsky, Stefan & Kalkschmied, Katja, 2019. "Corruption in space: A closer look at the world's subnations," European Journal of Political Economy, Elsevier, vol. 59(C), pages 400-422.
    14. Felder, Stefan & Tauchmann, Harald, 2013. "Federal state differentials in the efficiency of health production in Germany: an artifact of spatial dependence?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14(1), pages 21-39.
    15. Álvarez, Inmaculada C. & Barbero, Javier & Zofío, José L., 2017. "A Panel Data Toolbox for MATLAB," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i06).
    16. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    17. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    18. Harald Badinger & Peter Egger, 2009. "Estimation of Higher-Order Spatial Autoregressive Panel Data Error Component Models," CESifo Working Paper Series 2556, CESifo.
    19. Jingjing Gao & Gabriela A. Gallegos & Joe F. West, 2023. "Public Health Policy, Political Ideology, and Public Emotion Related to COVID-19 in the U.S," IJERPH, MDPI, vol. 20(21), pages 1-14, October.
    20. Zhang Yuanqing, 2014. "Estimation of Partially Specified Spatial Autoregressive Model," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 226-235, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:gewi18:275894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gewisea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.