IDEAS home Printed from https://ideas.repec.org/p/ags/cfcp04/124068.html
   My bibliography  Save this paper

Fish for Feed vs Fish for Food

Author

Listed:
  • Allan, Geoff L.

Abstract

Aquaculture is the fastest-growing food producing industry sector in the world. Demand for feed ingredients, particularly for preferred protein sources such as fishmeal, fish oil and ‘trash fish’, has also increased, raising questions about sustainability and uses of fish for aquaculture feeds or directly as human food. Approximately 30 million metric tonnes (MMT) of fish from capture fisheries are used each year to produce fishmeal and fish oil. The species used are not usually consumed directly by humans. Production of fishmeal and fish oil has remained relatively static over many years, with the increasing amount going to aquaculture feeds being balanced by reducing amounts going to other animal feeds. Trash fish are generally smaller or lower-value species captured in the wild and are increasingly used to directly feed aquaculture species in Asia. Although there is no reliable estimate of the total amount of trash fish used by aquaculture, the figure is probably >5 MMT y–1. As aquaculture expands, the potential for conflict between uses and users of different fish products is increasing. There is an urgent research priority to identify potential impacts of increasing demand on trash fish for aquaculture on fish resources and to identify practical alternatives. The identification and use of alternative ingredients for aquaculture feeds has been an international research priority for at least 15 y, and significant advances have been made. Fishmeal has been completely replaced in feeds for many species and included at very reduced levels in feeds for many others. These trends need to continue and ongoing research in this field remains a priority. Research to replace fish oil is more difficult, but blends of vegetable oils have been used to successfully reduce reliance on fish oil for a number of species. Coldwater marine algae called thraustochytrids, with very high contents of ‘marine’ fatty acids, may provide an alternative if industrial-scale fermentation can be made cost effective.

Suggested Citation

  • Allan, Geoff L., 2004. "Fish for Feed vs Fish for Food," 2004: Fish, Aquaculture and Food Security: Sustaining Fish as a Food Supply, 11 August 2004 124068, Crawford Fund.
  • Handle: RePEc:ags:cfcp04:124068
    DOI: 10.22004/ag.econ.124068
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124068/files/Alllan2004.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Delgado, C.L. & Wada, N. & Rosegrant, M.W. & Meijer, S. & Ahmed, M., 2003. "Fish to 2020: supply and demand in changing global markets," Monographs, The WorldFish Center, number 15796, April.
    2. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    3. Edwards, Peter & Tuan, Le Anh & Allan, Geoff L., 2004. "A survey of marine trash fish and fish meal as aquaculture feed ingredients in Vietnam," Working Papers 118373, Australian Centre for International Agricultural Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libralato, Simone & Solidoro, Cosimo, 2008. "A bioenergetic growth model for comparing Sparus aurata's feeding experiments," Ecological Modelling, Elsevier, vol. 214(2), pages 325-337.
    2. Williams, Meryl J., 2004. "World Fish Supplies, Outlook and Food Security," 2004: Fish, Aquaculture and Food Security: Sustaining Fish as a Food Supply, 11 August 2004 124062, Crawford Fund.
    3. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    4. Ariel E. Turcios & Jutta Papenbrock, 2014. "Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?," Sustainability, MDPI, vol. 6(2), pages 1-21, February.
    5. Juszczyk, Juliusz, 2015. "Światowy rynek łososia hodowlanego – stan i perspektywy," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 15(30), pages 1-12, September.
    6. Dugan, Patrick & Dey, Madan M. & Sugunan, V.V., 2006. "Fisheries and water productivity in tropical river basins: Enhancing food security and livelihoods by managing water for fish," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 262-275, February.
    7. Leakey, Roger & Kranjac-Berisavljevic, Gordana & Caron, Patrick & Craufurd, Peter & Martin, Adrienne M. & McDonald, Andy & Abedini, Walter & Afiff, Suraya & Bakurin, Ndey & Bass, Steve & Hilbeck, Ange, 2009. "Impacts of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.
    8. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    9. repec:mse:cesdoc:13002r is not listed on IDEAS
    10. Asche, Frank & Oglend, Atle, 2016. "The relationship between input-factor and output prices in commodity industries: The case of Norwegian salmon aquaculture," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 35-47.
    11. Zoe G Nichols & Scott Rikard & Sayyed Mohammad Hadi Alavi & William C Walton & Ian A E Butts, 2021. "Regulation of sperm motility in Eastern oyster (Crassostrea virginica) spawning naturally in seawater with low salinity," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-24, March.
    12. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    13. Hughes, Conchúr & King, Jonathan W., 2023. "Habitat suitability modelling for an integrated multi-trophic aquaculture (IMTA) system along Europe's Atlantic coast," Ecological Modelling, Elsevier, vol. 484(C).
    14. József Popp & László Váradi & Emese Békefi & András Péteri & Gergő Gyalog & Zoltán Lakner & Judit Oláh, 2018. "Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    15. Wamukota, A. & Brewer, T.D. & Crona, B., 2014. "Market integration and its relation to income distribution and inequality among fishers and traders: The case of two small-scale Kenyan reef fisheries," Marine Policy, Elsevier, vol. 48(C), pages 93-101.
    16. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    17. Prein, M., 2002. "Integration of aquaculture into crop-animal systems in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 127-146.
    18. Walsh, Michael J. & Gerber Van Doren, Léda & Shete, Nilam & Prakash, Akshay & Salim, Usama, 2018. "Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions," Applied Energy, Elsevier, vol. 210(C), pages 591-603.
    19. Awwal Bamanga & Nnamdi Henry Amaeze & Bader Al-Anzi, 2019. "Comparative Investigation of Total, Recoverable and Bioavailable Fractions of Sediment Metals and Metalloids in the Lagos Harbour and Lagoon System," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    20. Paul Ehrlich, 2011. "A personal view: environmental education—its content and delivery," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 1(1), pages 6-13, March.
    21. Asche, Frank & Roll, Kristin H & Trollvik, Trine, 2009. "New aquaculture species. Entering the whitefish market," UiS Working Papers in Economics and Finance 2009/21, University of Stavanger.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:cfcp04:124068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://www.crawfordfund.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.