IDEAS home Printed from https://ideas.repec.org/p/ags/aaea23/335947.html
   My bibliography  Save this paper

The Impact of Climate Change on Perennial Crop Production in California: Yield Response and Adaptation

Author

Listed:
  • Wen, Yuanyuan
  • Zhang, Wei

Abstract

No abstract is available for this item.

Suggested Citation

  • Wen, Yuanyuan & Zhang, Wei, 2023. "The Impact of Climate Change on Perennial Crop Production in California: Yield Response and Adaptation," 2023 Annual Meeting, July 23-25, Washington D.C. 335947, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea23:335947
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/335947/files/Impact_of_Climate_Change_on_Perennial_Crop_Yields_in_California-FINAL.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric J Belasco & Joseph Cooper & Vincent H Smith, 2020. "The Development of a Weather‐based Crop Disaster Program," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 240-258, January.
    2. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    3. Cai, Ruohong & Yu, Danlin & Oppenheimer, Michael, 2014. "Estimating the Spatially Varying Responses of Corn Yields toWeather Variations using GeographicallyWeighted Panel Regression," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-23.
    4. Ruiqing Miao & Madhu Khanna & Haixiao Huang, 2016. "Responsiveness of Crop Yield and Acreage to Prices and Climate," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 191-211.
    5. Itai Trilnick & David Zilberman, 2021. "Microclimate Engineering for Climate Change Adaptation in Agriculture: The Case of California Pistachios," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1342-1358, August.
    6. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    7. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    8. Konstantinos Metaxoglou & Aaron Smith, 2020. "Productivity Spillovers From Pollution Reduction: Reducing Coal Use Increases Crop Yields," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 259-280, January.
    9. Kentaro Kawasaki & Shinsuke Uchida, 2016. "Quality Matters More Than Quantity: Asymmetric Temperature Effects on Crop Yield and Quality Grade," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 1195-1209.
    10. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    11. Xiaomeng Cui & Wei Xie, 2022. "Adapting Agriculture to Climate Change through Growing Season Adjustments: Evidence from Corn in China," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 249-272, January.
    12. Kentaro Kawasaki, 2019. "Two Harvests Are Better than One: Double Cropping as a Strategy for Climate Change Adaptation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 172-192.
    13. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    14. Li, Zhiyun & Ortiz-Bobea, Ariel, 2022. "On the Timing of Relevant Weather Conditions in Agriculture," 2022 Allied Social Sciences Association (ASSA) Annual Meeting (Virtual), January 7-9, 2022 316528, Agricultural and Applied Economics Association.
    15. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    16. Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.
    17. Alston, Julian M. & Fuller, Kate B. & Lapsley, James T. & Soleas, George, 2011. "Too Much of a Good Thing? Causes and Consequences of Increases in Sugar Content of California Wine Grapes," Journal of Wine Economics, Cambridge University Press, vol. 6(2), pages 135-159, October.
    18. Rejesus, Roderick M. & Coble, Keith H. & Miller, Mary France & Boyles, Ryan & Goodwin, Barry K & Knight, Thomas O., 2015. "Accounting for Weather Probabilities in Crop Insurance Rating," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(2), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    2. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    3. repec:ags:aaea22:335522 is not listed on IDEAS
    4. Liu, Ziheng, 2025. "CO2-driven crop comparative advantage and planting decision: Evidence from US cropland," Food Policy, Elsevier, vol. 130(C).
    5. François Bareille & Raja Chakir, 2024. "Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 989-1019, May.
    6. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated agricultural sensitivity and adaptability to rising temperatures across regions and sectors in China," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    7. Zhang, Jingfang & Malikov, Emir & Miao, Ruiqing & Ghosh, Prasenjit N., 2024. "Geography of Climate Change Adaptation in U.S. Agriculture: Evidence from Spatially Varying Long-Differences Approach," 2024 Annual Meeting, July 28-30, New Orleans, LA 343758, Agricultural and Applied Economics Association.
    8. Xiaomeng Cui & Wei Xie, 2022. "Adapting Agriculture to Climate Change through Growing Season Adjustments: Evidence from Corn in China," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 249-272, January.
    9. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated Agricultural Sensitivity and Adaptability to Rising Temperatures across Regions and Sectors in China," 2023 Annual Meeting, July 23-25, Washington D.C. 335522, Agricultural and Applied Economics Association.
    10. Ramsey, A. Ford & Tack, Jesse B. & Balota, Maria, 2021. "Double or Nothing: Impacts of Warming on Crop Quantity, Quality, and Revenue," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(01), January.
    11. Yu, Le & Chen, Yuan & Zhang, Siqi, 2025. "Climate change and staple grain acreage: Regional adaptation in China's agricultural cluster," China Economic Review, Elsevier, vol. 89(C).
    12. Matthew Gammans & Pierre Mérel & Ariel Ortiz‐Bobea, 2025. "Double cropping as an adaptation to climate change in the United States," American Journal of Agricultural Economics, John Wiley & Sons, vol. 107(2), pages 532-557, March.
    13. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    14. Surender Kumar & Madhu Khanna, 2023. "Distributional heterogeneity in climate change impacts and adaptation: Evidence from Indian agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 54(2), pages 147-160, March.
    15. repec:ags:aaea22:343758 is not listed on IDEAS
    16. Kjersti Nes & K. Aleks Schaefer & Matthew Gammans & Daniel Paul Scheitrum, 2025. "Extreme weather events, climate expectations, and agricultural export dynamics," American Journal of Agricultural Economics, John Wiley & Sons, vol. 107(3), pages 826-845, May.
    17. Stetter, Christian & Sauer, Johannes, 2024. "Tackling climate change: Agroforestry adoption in the face of regional weather extremes," Ecological Economics, Elsevier, vol. 224(C).
    18. Liu, Ziheng & Lu, Qinan, 2024. "Carbon dioxide fertilization, carbon neutrality, and food security," China Economic Review, Elsevier, vol. 85(C).
    19. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    20. Moustafa Feriga & Nancy Lozano Gracia & Pieter Serneels, 2025. "The Impact of Climate Change on Work: Lessons for Developing Countries," The World Bank Research Observer, World Bank, vol. 40(1), pages 104-146.
    21. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    22. Kakimoto, Shunkei & Mieno, Taro, 2025. "Size and the Nature of Measurement Error in Gridded Weather Datasets and its Consequential Estimation Bias in Regression Model: An Application to PRISM Datasets for the US Midwest Regions," 2025 AAEA & WAEA Joint Annual Meeting, July 27-29, 2025, Denver, CO 360727, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea23:335947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.