IDEAS home Printed from https://ideas.repec.org/p/ags/aaea05/19466.html
   My bibliography  Save this paper

Nitrogen as a Capital Input and Stock Pollutant: A Dynamic Analysis of Corn Production and Nitrogen Leaching under Non-Uniform Irrigation

Author

Listed:
  • Schwabe, Kurt A.
  • Knapp, Keith C.

Abstract

A spatially dynamic programming model of nonuniform irrigation is developed to investigate the nitrogen leaching problem associated with irrigated agriculture. We evaluate the importance of temporal and spatial elements in (i) appropriately modeling the interseasonal corn production problem with nitrogen carry-over and leaching under non-uniform irrigation, and (ii) in adequately evaluating alternative policy instruments for pollution control. Comparisons of the time profiles under spatially variable nitrogen levels arising from nonuniform irrigation are provided along with an evaluation of three different price-based policy instruments for reducing nitrogen leaching.

Suggested Citation

  • Schwabe, Kurt A. & Knapp, Keith C., 2005. "Nitrogen as a Capital Input and Stock Pollutant: A Dynamic Analysis of Corn Production and Nitrogen Leaching under Non-Uniform Irrigation," 2005 Annual meeting, July 24-27, Providence, RI 19466, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea05:19466
    DOI: 10.22004/ag.econ.19466
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/19466/files/sp05sc01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.19466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scott L. Johnson & Richard M. Adams & Gregory M. Perry, 1991. "The On-Farm Costs of Reducing Groundwater Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(4), pages 1063-1073.
    2. Nkonya, Ephraim M. & Featherstone, Allen M., 2000. "Determining Socially Optimal Nitrogen Application Rates Using A Delayed Response Model: The Case Of Irrigated Corn In Western Kansas," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-15, December.
    3. Taylor, Michael L. & Adams, Richard M. & Miller, Stanley F., 1992. "Farm-Level Response To Agricultural Effluent Control Strategies: The Case Of The Willamette Valley," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 17(1), pages 1-13, July.
    4. Peter Berck & Jacqueline Geoghegan & Stephen Stohs, 2000. "A Strong Test of the von Liebig Hypothesis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 948-955.
    5. Quirino Paris, 1992. "The von Liebig Hypothesis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 1019-1028.
    6. Dinar, Ariel & Letey, J. & Knapp, Keith C., 1985. "Economic evaluation of salinity, drainage and non-uniformity of infiltrated irrigation water," Agricultural Water Management, Elsevier, vol. 10(3), pages 221-233, November.
    7. Segarra, Eduardo & Ethridge, Don E. & Deussen, Curtis R. & Onken, Arthur B., 1989. "Nitrogen Carry-Over Impacts In Irrigated Cotton Production, Southern High Plains Of Texas," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 14(2), pages 1-10, December.
    8. Mark L. Teague & Daniel J. Bernardo & Harry P. Mapp, 1995. "Farm-Level Economic Analysis Incorporating Stochastic Environmental Risk Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(1), pages 8-19.
    9. Choi, E. Kwan & Feinerman, Eli, 1995. "Regulation Of Nitrogen Pollution: Taxes Versus Quotas," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 20(1), pages 1-22, July.
    10. Lambert, David K., 1990. "Risk Considerations In The Reduction Of Nitrogen Fertilizer Use In Agricultural Production," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baerenklau, Kenneth A. & Nergis, Nermin, 2006. "Controlling Dairy Nitrogen Emissions: A Dynamic Analysis of Herd Adjustment, Ground Water Discharges, and Air Emissions," 2006 Annual meeting, July 23-26, Long Beach, CA 21448, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Baerenklau, Kenneth A. & Nergis, Nermin & Schwabe, Kurt A., 2007. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural Model," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 10253, Western Agricultural Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mapp, Harry P., Jr., 1999. "Impact Of Production Changes On Income And Environmental Risk In The Southern High Plains," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 31(2), pages 1-11, August.
    2. Weersink, Alfons & Dutka, Charray & Goss, Michael, 1996. "Crop Price And Risk Effects On Farmer Abatement Costs Of Reducing Nitrate Levels In Groundwater Imposed By Environmental Policy Instruments," Working Papers 244794, University of Guelph, Department of Food, Agricultural and Resource Economics.
    3. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    4. Chowdhury, Manzoor E. & Lacewell, Ronald D., 1996. "Implications Of Alternative Policies On Nitrate Contamination Of Groundwater," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 21(1), pages 1-14, July.
    5. Apland, Jeffrey & Grainger, Corbett & Strock, Jeffrey, 2004. "Modeling Agricultural Production Considering Water Quality and Risk," Staff Papers 14240, University of Minnesota, Department of Applied Economics.
    6. Ribaudo, Marc O. & Heimlich, Ralph & Claassen, Roger & Peters, Mark, 2001. "Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin," Ecological Economics, Elsevier, vol. 37(2), pages 183-197, May.
    7. JunJie Wu & Bruce Babcock, 2001. "Spatial Heterogeneity and the Choice of Instruments to Control Nonpoint Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(2), pages 173-192, February.
    8. Flichman, Guillermo & Jacquet, Florence, 2003. "Le couplage des modèles agronomiques et économiques : intérêt pour l'analyse des politiques," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 67.
    9. Chu, Mei-chin & Swinton, Scott M. & Batie, Sandra S. & Dobbins, Craig & Doering, Otto, III & Ritchie, Joe T., 1995. "Designing Contracts To Reduce Agricultural Non-Point Source Pollution," 1995 Annual Meeting, August 6-9, Indianapolis, Indiana 271474, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Swinton, Scott M. & Clark, David S., 1994. "Farm-Level Evaluation Of Alternative Policy Approaches To Reduce Nitrate Leaching From Midwest Agriculture," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 23(1), pages 1-9, April.
    11. Howry, Sierra S. & Stoecker, Arthur L. & Storm, Daniel E. & White, Michael J., 2008. "Economic Analysis of Management Practices to Reduce Phosphorus Load to Lake Eucha and Spavinaw," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6793, Southern Agricultural Economics Association.
    12. Guillermo Flichman & Florence Jacquet, 2003. "Le couplage des modèles agronomiques et économiques : intérêt pour l'analyse des politiques," Post-Print hal-01201042, HAL.
    13. Matekole, Augustus N. & Westra, John V., 2009. "Economic Analysis of Tillage and Nutrient Best Management Practices in the Ouachita River Basin, Louisiana," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49519, Agricultural and Applied Economics Association.
    14. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    15. Livanis, Grigorios T. & Salois, Matthew J. & Moss, Charles B., 2009. "A Nonparametric Kernel Representation of the Agricultural Production Function: Implications for Economic Measures of Technology," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51063, Agricultural Economics Society.
    16. Boisvert, Richard N. & Peterson, Jeffrey M., 2001. "Control Of Nonpoint Source Pollution Through Voluntary Incentive-Based Policies: An Application To Nitrate Contamination In New York," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 30(2), pages 1-12, October.
    17. Divina Gracia P. Rodriguez, 2020. "An Assessment of the Site-Specific Nutrient Management (SSNM) Strategy for Irrigated Rice in Asia," Agriculture, MDPI, vol. 10(11), pages 1-28, November.
    18. Thomas, Arthur C. & Boisvert, Richard N., 1995. "The Bioeconomics Of Regulating Nitrates In Groundwater From Agricultural Production Through Taxes, Quantity Restrictions, And Pollution Permits," Research Bulletins 122999, Cornell University, Department of Applied Economics and Management.
    19. Horan, Richard D. & Claassen, Roger & Cooper, Joseph C., 2000. "Environmental Risk And Agri-Environmental Policy Design," 2000 Annual meeting, July 30-August 2, Tampa, FL 21827, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Swinton, Scott M. & Black, J. Roy, 2000. "Modeling Of Agricultural Systems," Staff Paper Series 11581, Michigan State University, Department of Agricultural, Food, and Resource Economics.

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea05:19466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.