IDEAS home Printed from https://ideas.repec.org/p/ags/aaea05/19155.html
   My bibliography  Save this paper

A Bayesian Implementation of the Standard Optimal Hedging Model: Parameter Estimation Risk and Subjective Views

Author

Listed:
  • Shi, Wei
  • Irwin, Scott H.

Abstract

We develop a Bayesian implementation of the standard optimal hedging model to analyze the impact of hedgers' subjective views on their hedging behavior. The results show the subjective views have a substantial impact on hedgers' optimal positions, explaining the large cross-sectional and time series variation of hedging positions in practice.

Suggested Citation

  • Shi, Wei & Irwin, Scott H., 2005. "A Bayesian Implementation of the Standard Optimal Hedging Model: Parameter Estimation Risk and Subjective Views," 2005 Annual meeting, July 24-27, Providence, RI 19155, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea05:19155
    DOI: 10.22004/ag.econ.19155
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/19155/files/sp05sh06.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.19155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anderson, Ronald W & Danthine, Jean-Pierre, 1980. "Hedging and Joint Production: Theory and Illustrations," Journal of Finance, American Finance Association, vol. 35(2), pages 487-498, May.
    2. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    3. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    4. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-278, July.
    5. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    6. Leland L. Johnson, 1960. "The Theory of Hedging and Speculation in Commodity Futures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 139-151.
    7. Lence, Sergio H & Hayes, Dermot J, 1994. "Parameter-Based Decision Making under Estimation Risk: An Application to Futures Trading," Journal of Finance, American Finance Association, vol. 49(1), pages 345-357, March.
    8. Ľuboš Pástor, 2000. "Portfolio Selection and Asset Pricing Models," Journal of Finance, American Finance Association, vol. 55(1), pages 179-223, February.
    9. Sergio H. Lence & Dermot J. Hayes, 1994. "The Empirical Minimum-Variance Hedge," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(1), pages 94-104.
    10. Wei Shi & Scott H. Irwin, 2005. "Optimal Hedging with a Subjective View: An Empirical Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 918-930.
    11. Robert J. Myers & Stanley R. Thompson, 1989. "Generalized Optimal Hedge Ratio Estimation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(4), pages 858-868.
    12. Polson, Nicholas G & Tew, Bernard V, 2000. "Bayesian Portfolio Selection: An Empirical Analysis of the S&P 500 Index 1970-1996," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 164-173, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Shi & Scott H. Irwin, 2005. "Optimal Hedging with a Subjective View: An Empirical Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 918-930.
    2. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    3. David J. Pannell & Getu Hailu & Alfons Weersink & Amanda Burt, 2008. "More reasons why farmers have so little interest in futures markets," Agricultural Economics, International Association of Agricultural Economists, vol. 39(1), pages 41-50, July.
    4. Sergio H. Lence & Dermot J. Hayes, 1994. "The Empirical Minimum-Variance Hedge," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(1), pages 94-104.
    5. Moorman, Theodore, 2014. "An empirical investigation of methods to reduce transaction costs," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 230-246.
    6. Robert Marschinski & Pietro Rossi & Massimo Tavoni & Flavio Cocco, 2007. "Portfolio selection with probabilistic utility," Annals of Operations Research, Springer, vol. 151(1), pages 223-239, April.
    7. Jahangir Sultan & Mohammad Hasan, 2008. "The effectiveness of dynamic hedging: evidence from selected European stock index futures," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 469-488.
    8. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
    9. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    10. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    11. Loriana Pelizzon & Massimiliano Caporin, 2012. "Market volatility, optimal portfolios and naive asset allocations," Working Papers 2012_08, Department of Economics, University of Venice "Ca' Foscari".
    12. Kellerer, Belinda, 2019. "Portfolio Optimization and Ambiguity Aversion," Junior Management Science (JUMS), Junior Management Science e. V., vol. 4(3), pages 305-338.
    13. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    14. David E. Allen & Michael McAleer & Shelton Peiris & Abhay K. Singh, 2014. "Hedge Fund Portfolio Diversification Strategies Across the GFC," Working Papers in Economics 14/27, University of Canterbury, Department of Economics and Finance.
    15. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    16. Alexander Bade & Gabriel Frahm & Uwe Jaekel, 2009. "A general approach to Bayesian portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 337-356, October.
    17. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    18. Stavros Degiannakis & Christos Floros, 2010. "Hedge Ratios in South African Stock Index Futures," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(3), pages 285-304, December.
    19. Rodt, Marc & Schäfer, Klaus, 2005. "Absicherung von Strompreisrisiken mit Futures: Theorie und Empirie," Freiberg Working Papers 2005/18, TU Bergakademie Freiberg, Faculty of Economics and Business Administration.
    20. Allen, D.E. & McAleer, M.J. & Powell, R.J. & Singh, A.K., 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Econometric Institute Research Papers EI2015-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Keywords

    Marketing;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea05:19155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.