IDEAS home Printed from https://ideas.repec.org/p/aah/create/2019-07.html
   My bibliography  Save this paper

Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths

Author

Listed:
  • Søren Kjærgaard

    (University of Southern Denmark)

  • Yunus Emre Ergemen

    (University of Aarhus and CREATES)

  • Malene Kallestrup-Lamb

    (University of Aarhus and CREATES)

  • Jim Oeppen

    (University of Southern Denmark)

  • Rune Lindahl-Jacobsen

    (University of Southern Denmark)

Abstract

Cause-specific mortality forecasting is often based on predicting cause-specific death rates independently. Only a few methods have been suggested that incorporate dependence among causes. An attractive alternative is to model and forecast cause-specific death distributions, rather than mortality rates, as dependence among the causes can be incorporated directly. We follow this idea and propose two new models which extend the current research on mortality forecasting using death distributions. We find that adding age, time, and cause-specific weights and decomposing both joint and individual variation among different causes of death increased the forecast accuracy of cancer deaths using data for French and Dutch populations

Suggested Citation

  • Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup-Lamb & Jim Oeppen & Rune Lindahl-Jacobsen, 2019. "Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths," CREATES Research Papers 2019-07, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2019-07
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/19/rp19_07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2015. "Actuarial Applications and Estimation of Extended~CreditRisk$^+$," Papers 1505.04757, arXiv.org, revised Apr 2017.
    2. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    3. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    4. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    5. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    6. Marie-Pier Bergeron-Boucher & Marcus Ebeling & Vladimir Canudas-Romo, 2015. "Decomposing changes in life expectancy: Compression versus shifting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(14), pages 391-424.
    7. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    8. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    9. Colin D Mathers & Dejan Loncar, 2006. "Projections of Global Mortality and Burden of Disease from 2002 to 2030," PLOS Medicine, Public Library of Science, vol. 3(11), pages 1-20, November.
    10. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    11. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    12. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    13. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    14. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    15. Roland Rau & Eugeny Soroko & Domantas Jasilionis & James W. Vaupel, 2008. "Continued Reductions in Mortality at Advanced Ages," Population and Development Review, The Population Council, Inc., vol. 34(4), pages 747-768, December.
    16. Séverine Arnold (-Gaille) & Michael Sherris, 2013. "Forecasting Mortality Trends Allowing for Cause-of-Death Mortality Dependence," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(4), pages 273-282.
    17. Kyle J. Foreman & Guangquan Li & Nicky Best & Majid Ezzati, 2017. "Small area forecasts of cause-specific mortality: application of a Bayesian hierarchical model to US vital registration data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 121-139, January.
    18. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S⊘ren Kjærgaard & Yunus Emre Ergemen & Marie‐Pier Bergeron‐Boucher & Jim Oeppen & Malene Kallestrup‐Lamb, 2020. "Longevity forecasting by socio‐economic groups using compositional data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1167-1187, June.
    2. Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    4. Bergeron-Boucher, Marie-Pier & Kjærgaard, Søren, 2022. "Mortality forecasts by age and cause of death: How to forecast both dimensions?," SocArXiv d7hbp, Center for Open Science.
    5. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.
    6. Marco Stefanucci & Stefano Mazzuco, 2022. "Analysing cause‐specific mortality trends using compositional functional data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 61-83, January.
    7. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    8. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    9. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    10. Nicholas Bett & Juma Kasozi & Daniel Ruturwa, 2023. "Dependency Modeling Approach of Cause-Related Mortality and Longevity Risks: HIV/AIDS," Risks, MDPI, vol. 11(2), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    2. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    4. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    5. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    6. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
    7. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    8. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    9. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    10. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    11. Kenneth Wong & Jackie Li & Sixian Tang, 2020. "A modified common factor model for modelling mortality jointly for both sexes," Journal of Population Research, Springer, vol. 37(2), pages 181-212, June.
    12. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    13. Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
    14. Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
    15. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    16. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    17. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    18. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    19. Flici, Farrid, 2016. "Projection des taux de mortalité par âges pour la population algérienne [Forecasting The Age Specific Mortality Rates For The Algerian Population]," MPRA Paper 98784, University Library of Munich, Germany, revised Dec 2016.
    20. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.

    More about this item

    Keywords

    Cause-specific mortality; Cancer forecast; Forecasting methods; Compositional Data Analysis; Population health;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2019-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.