IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/d7hbp.html
   My bibliography  Save this paper

Mortality forecasts by age and cause of death: How to forecast both dimensions?

Author

Listed:
  • Bergeron-Boucher, Marie-Pier
  • Kjærgaard, Søren

Abstract

Mortality forecasts by age and cause of death are important for more efficient spending on, for example, health care and medical technology. However, there is a reluctance in including the cause of death dimension to the forecast, as forecasts by cause are confronted with many methodological problems. While some of these problems have been addressed in the last two decades, an important remaining issue with forecasts by cause is their inconsistence with all- causes forecasts. This problem relates to how changes in mortality by age and cause interact. So how can we forecast this relation in a coherent manner? To address this problem, we use a model framework based on a Compositional Data Analysis (CoDA) approach which models 1) age and cause simultaneously; 2) cause-of-death distribution within each age group and 3) age-at-death distribution within each cause. We specify multiple models within each of the three frameworks to obtain a better understanding of the age and cause interactions. The results show that forecasting cause-of-death distribution within each age group generally provides the most accurate forecasts and allows for the forecast by cause and for all-cause to be consistent with one another.

Suggested Citation

  • Bergeron-Boucher, Marie-Pier & Kjærgaard, Søren, 2022. "Mortality forecasts by age and cause of death: How to forecast both dimensions?," SocArXiv d7hbp, Center for Open Science.
  • Handle: RePEc:osf:socarx:d7hbp
    DOI: 10.31219/osf.io/d7hbp
    as

    Download full text from publisher

    File URL: https://osf.io/download/62b96049ca817413a0ba26fc/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/d7hbp?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Canudas-Romo & Eva DuGoff & Albert W. Wu & Saifuddin Ahmed & Gerard Anderson, 2016. "Life Expectancy in 2040: What Do Clinical Experts Expect?," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(3), pages 276-285, July.
    2. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    3. Ewa Tabeau & Peter Ekamper & Corina Huisman & Alinda Bosch, 1999. "Improving Overall Mortality Forecasts by Analysing Cause-of-Death, Period and Cohort Effects in Trends," European Journal of Population, Springer;European Association for Population Studies, vol. 15(2), pages 153-183, June.
    4. Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup-Lamb & Jim Oeppen & Rune Lindahl-Jacobsen, 2019. "Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths," CREATES Research Papers 2019-07, Department of Economics and Business Economics, Aarhus University.
    5. Mauro Bernardi & Leopoldo Catania, 2014. "The Model Confidence Set package for R," Papers 1410.8504, arXiv.org.
    6. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    7. Viorela Diaconu & Nadine Ouellette & Carlo Giovanni Camarda & Robert Bourbeau, 2016. "Insight on 'typical' longevity: An analysis of the modal lifespan by leading causes of death in Canada," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 35(17), pages 471-504.
    8. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    9. Cesare, Mariachiara Di & Murphy, Mike, 2009. "Forecasting Mortality, Different Approaches for Different Cause of Deaths? The Cases of Lung Cancer; Influenza, Pneumonia, and Bronchitis; and Motor Vehicle Accidents," British Actuarial Journal, Cambridge University Press, vol. 15(S1), pages 185-211, January.
    10. Kyle J. Foreman & Guangquan Li & Nicky Best & Majid Ezzati, 2017. "Small area forecasts of cause-specific mortality: application of a Bayesian hierarchical model to US vital registration data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 121-139, January.
    11. Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup‐Lamb & Jim Oeppen & Rune Lindahl‐Jacobsen, 2019. "Forecasting causes of death by using compositional data analysis: the case of cancer deaths," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(5), pages 1351-1370, November.
    12. Fanny Janssen & Leo Wissen & Anton Kunst, 2013. "Including the Smoking Epidemic in Internationally Coherent Mortality Projections," Demography, Springer;Population Association of America (PAA), vol. 50(4), pages 1341-1362, August.
    13. Vladimir Canudas-Romo, 2008. "The modal age at death and the shifting mortality hypothesis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(30), pages 1179-1204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    3. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    5. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.
    6. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    7. S⊘ren Kjærgaard & Yunus Emre Ergemen & Marie‐Pier Bergeron‐Boucher & Jim Oeppen & Malene Kallestrup‐Lamb, 2020. "Longevity forecasting by socio‐economic groups using compositional data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1167-1187, June.
    8. Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
    9. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    10. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    11. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    12. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    13. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    14. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    15. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    16. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    17. Foroni, Claudia & Ravazzolo, Francesco & Sadaba, Barbara, 2018. "Assessing the predictive ability of sovereign default risk on exchange rate returns," Journal of International Money and Finance, Elsevier, vol. 81(C), pages 242-264.
    18. Leopoldo Catania & Stefano Grassi & Francesco Ravazzolo, 2018. "Predicting the Volatility of Cryptocurrency Time Series," Working Papers No 3/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    19. Silvia Muzzioli & Luca Gambarelli & Bernard De Baets, 2018. "Indices for Financial Market Volatility Obtained Through Fuzzy Regression," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1659-1691, November.
    20. Linh Nguyen & Vilém Novák & Soheyla Mirshahi, 2020. "Trend‐cycle Estimation Using Fuzzy Transform and Its Application for Identifying Bull and Bear Phases in Markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 111-124, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:d7hbp. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.