IDEAS home Printed from https://ideas.repec.org/b/spr/sprbok/978-1-4614-6849-3.html

Applied Predictive Modeling

Author

Listed:
  • Max Kuhn

    (Pfizer Global Research and Development, Division of Nonclinical Statistics)

  • Kjell Johnson

    (Arbor Analytics)

Abstract

No abstract is available for this item.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • Max Kuhn & Kjell Johnson, 2013. "Applied Predictive Modeling," Springer Books, Springer, number 978-1-4614-6849-3, January.
  • Handle: RePEc:spr:sprbok:978-1-4614-6849-3
    DOI: 10.1007/978-1-4614-6849-3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Praveen Kumar Ashok, 2020. "Advanced Data Modeling Techniques in Power BI for Enterprise Analytics," International Journal of Computing and Engineering, CARI Journals Limited, vol. 1(2), pages 32-42.
    2. Renato P. Colistete, 2021. "Predicting Skills of Runaway Slaves in Sao Paulo, 1854-1887," Working Papers, Department of Economics 2021_15, University of São Paulo (FEA-USP), revised 23 Apr 2021.
    3. Deslatte, Aaron & Scott, Tyler A. & Carter, David P., 2019. "Specialized governance and regional land-use outcomes: A spatial analysis of Florida community development districts," Land Use Policy, Elsevier, vol. 83(C), pages 227-239.
    4. Dossa, Joel Victor & Ukwuoma, Chiagoziem C. & Thomas, Dara & Dossa, James Mhoja & Gopang, Aamir Ali, 2025. "Prediction of nexus among ESG disclosure and firm Performance: Applicability, explainability and implications," Innovation and Green Development, Elsevier, vol. 4(4).
    5. Huynh, Tran & Uebelmesser, Silke, 2024. "Early warning models for systemic banking crises: Can political indicators improve prediction?," European Journal of Political Economy, Elsevier, vol. 81(C).
    6. Adamecz-Völgyi, Anna & Henderson, Morag & Shure, Nikki, 2020. "Is ‘first in family’ a good indicator for widening university participation?," Economics of Education Review, Elsevier, vol. 78(C).
    7. Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2019. "Predicting Motor Insurance Claims Using Telematics Data—XGBoost versus Logistic Regression," Risks, MDPI, vol. 7(2), pages 1-16, June.
    8. Mohamed Hanafy & Ruixing Ming, 2021. "Machine Learning Approaches for Auto Insurance Big Data," Risks, MDPI, vol. 9(2), pages 1-23, February.
    9. Abdullah S. Al-Jawarneh & Ahmed R. M. Alsayed & Heba N. Ayyoub & Mohd Tahir Ismail & Siok Kun Sek & Kivanç Halil Ariç & Giancarlo Manzi, 2024. "Enhancing Model Selection by Obtaining Optimal Tuning Parameters in Elastic-Net Quantile Regression, Application to Crude Oil Prices," JRFM, MDPI, vol. 17(8), pages 1-19, July.
    10. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    11. Tomasz Pisula, 2020. "An Ensemble Classifier-Based Scoring Model for Predicting Bankruptcy of Polish Companies in the Podkarpackie Voivodeship," JRFM, MDPI, vol. 13(2), pages 1-35, February.
    12. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    13. Paritosh Navinchandra Jha & Marco Cucculelli, 2021. "A New Model Averaging Approach in Predicting Credit Risk Default," Risks, MDPI, vol. 9(6), pages 1-15, June.
    14. Barone, Guglielmo & Letta, Marco, 2025. "Unlevel playing field? Machine learning meets state aid regulation," International Journal of Industrial Organization, Elsevier, vol. 101(C).
    15. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Pinto, Claudio, 2025. "Combining machine learning techniques with NDEA methodology: the use of R.F. and A.N.N," MPRA Paper 126539, University Library of Munich, Germany.
    17. Hans Genberg & Özer Karagedikli, 2021. "Machine Learning and Central Banks: Ready for Prime Time?," Working Papers wp43, South East Asian Central Banks (SEACEN) Research and Training Centre.
    18. Lei Xu & Takuji Kinkyo & Shigeyuki Hamori, 2018. "Predicting Currency Crises: A Novel Approach Combining Random Forests and Wavelet Transform," JRFM, MDPI, vol. 11(4), pages 1-11, December.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprbok:978-1-4614-6849-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.