IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i8p323-d1443634.html
   My bibliography  Save this article

Enhancing Model Selection by Obtaining Optimal Tuning Parameters in Elastic-Net Quantile Regression, Application to Crude Oil Prices

Author

Listed:
  • Abdullah S. Al-Jawarneh

    (Department of Mathematics, Faculty of Science, Jerash University, Jerash 26150, Jordan)

  • Ahmed R. M. Alsayed

    (Department of Economics, Quantitative Methods, and Data Mining Centre, University of Milan, 20122 Milan, Italy
    Department of Economics, University of Bergamo, 24127 Bergamo, Italy)

  • Heba N. Ayyoub

    (Department of Mathematics, Faculty of Science, Philadelphia University, Amman 19392, Jordan)

  • Mohd Tahir Ismail

    (School of Mathematical Sciences, Universiti Sains Malaysia, Gelugor 11700, Malaysia)

  • Siok Kun Sek

    (School of Mathematical Sciences, Universiti Sains Malaysia, Gelugor 11700, Malaysia)

  • Kivanç Halil Ariç

    (Faculty of Economics and Administrative Sciences, Sivas Cumhuriyet University, 58070 Sivas, Turkey)

  • Giancarlo Manzi

    (Department of Economics, Quantitative Methods, and Data Mining Centre, University of Milan, 20122 Milan, Italy)

Abstract

Recently, there has been an increased focus on enhancing the accuracy of machine learning techniques. However, there is the possibility to improve it by selecting the optimal tuning parameters, especially when data heterogeneity and multicollinearity exist. Therefore, this study proposed a statistical model to study the importance of changing the crude oil prices in the European Union, in which it should meet state-of-the-art developments on economic, political, environmental, and social challenges. The proposed model is Elastic-net quantile regression, which provides more accurate estimations to tackle multicollinearity, heavy-tailed distributions, heterogeneity, and selecting the most significant variables. The performance has been verified by several statistical criteria. The main findings of numerical simulation and real data application confirm the superiority of the proposed Elastic-net quantile regression at the optimal tuning parameters, as it provided significant information in detecting changes in oil prices. Accordingly, based on the significant selected variables; the exchange rate has the highest influence on oil price changes at high frequencies, followed by retail trade, interest rates, and the consumer price index. The importance of this research is that policymakers take advantage of the vital importance of developing energy policies and decisions in their planning.

Suggested Citation

  • Abdullah S. Al-Jawarneh & Ahmed R. M. Alsayed & Heba N. Ayyoub & Mohd Tahir Ismail & Siok Kun Sek & Kivanç Halil Ariç & Giancarlo Manzi, 2024. "Enhancing Model Selection by Obtaining Optimal Tuning Parameters in Elastic-Net Quantile Regression, Application to Crude Oil Prices," JRFM, MDPI, vol. 17(8), pages 1-19, July.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:8:p:323-:d:1443634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/8/323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/8/323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Amano, Robert A & Norden, Simon, 1998. "Exchange Rates and Oil Prices," Review of International Economics, Wiley Blackwell, vol. 6(4), pages 683-694, November.
    2. Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2023. "Quantifying Time-Varying Forecast Uncertainty and Risk for the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 523-537, April.
    3. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    4. Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
    5. Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    2. Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "Big Data Analytics: A New Perspective," CESifo Working Paper Series 5824, CESifo.
    3. Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    4. A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2018. "A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models," Econometrica, Econometric Society, vol. 86(4), pages 1479-1512, July.
    5. Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
    6. Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
    7. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    8. Yiting Ma & Pan Shang & Lingchen Kong, 2025. "Tuning parameter selection for the adaptive nuclear norm regularized trace regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(3), pages 491-516, June.
    9. Kaida Cai & Xuewen Lu & Hua Shen, 2025. "Group sparse sufficient dimension reduction: a model-free group variable selection method," Computational Statistics, Springer, vol. 40(5), pages 2323-2366, June.
    10. Krüger, Jens & Ruths Sion, Sebastian, 2019. "Improving oil price forecasts by sparse VAR methods," Darmstadt Discussion Papers in Economics 237, Darmstadt University of Technology, Department of Law and Economics.
    11. Dengluan Dai & Anmin Tang & Jinli Ye, 2023. "High-Dimensional Variable Selection for Quantile Regression Based on Variational Bayesian Method," Mathematics, MDPI, vol. 11(10), pages 1-22, May.
    12. Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
    13. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    14. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    15. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    16. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    17. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    18. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    19. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    20. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:8:p:323-:d:1443634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.