IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4614-6849-3_4.html
   My bibliography  Save this book chapter

Over-Fitting and Model Tuning

In: Applied Predictive Modeling

Author

Listed:
  • Max Kuhn

    (Pfizer Global Research and Development, Division of Nonclinical Statistics)

  • Kjell Johnson

    (Arbor Analytics)

Abstract

Many modern classification and regression models are highly adaptable; they are capable of modeling complex relationships. Each model's adaptability is typically governed by a set of tuning parameters, which can allow each model to pinpoint predictive patterns and structures within the data. However, these tuning parameters can very identify predictive patterns that are not reproducible. This is known as “over-fitting.” Models that are over-fit generally have excellent predictivity for the samples on which they were built, but poor predictivity for new samples. Without a methodological approach to building and evaluating models, the modeler will not know if the model is over-fit until the next set of samples are predicted. In Section 4.1 we use a simple example to illustrate the problem of over-fitting. We then describe a systematic process for tuning models (Section 4.2), which is foundational to the remaining parts of the book. Core to model tuning are appropriate ways for splitting (or spending) the data, which is covered in Section 4.3. Resampling techniques (Section 4.4) are an alternative or complementary approach to data splitting. Recommendations for approaches to data splitting are provided in Section 4.7. After evaluating a number tuning parameters via data splitting or resampling, we must choose the final tuning parameters (Section 4.6). We also discuss how to choose the optimal model across several tuned models (Section 4.8) We illustrate how to implement the recommended techniques discussed in this chapter in the Computing Section (4.9). Exercises are provided at the end of the chapter to solidify concepts.

Suggested Citation

  • Max Kuhn & Kjell Johnson, 2013. "Over-Fitting and Model Tuning," Springer Books, in: Applied Predictive Modeling, chapter 0, pages 61-92, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4614-6849-3_4
    DOI: 10.1007/978-1-4614-6849-3_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4614-6849-3_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.