IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v27y2007i1p111-123.html
   My bibliography  Save this article

Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure

Author

Listed:
  • Christel Faes
  • Marc Aerts
  • Helena Geys
  • Geert Molenberghs

Abstract

Quantitative risk assessment involves the determination of a safe level of exposure. Recent techniques use the estimated dose‐response curve to estimate such a safe dose level. Although such methods have attractive features, a low‐dose extrapolation is highly dependent on the model choice. Fractional polynomials,(1) basically being a set of (generalized) linear models, are a nice extension of classical polynomials, providing the necessary flexibility to estimate the dose‐response curve. Typically, one selects the best‐fitting model in this set of polynomials and proceeds as if no model selection were carried out. We show that model averaging using a set of fractional polynomials reduces bias and has better precision in estimating a safe level of exposure (say, the benchmark dose), as compared to an estimator from the selected best model. To estimate a lower limit of this benchmark dose, an approximation of the variance of the model‐averaged estimator, as proposed by Burnham and Anderson,(2) can be used. However, this is a conservative method, often resulting in unrealistically low safe doses. Therefore, a bootstrap‐based method to more accurately estimate the variance of the model averaged parameter is proposed.

Suggested Citation

  • Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
  • Handle: RePEc:wly:riskan:v:27:y:2007:i:1:p:111-123
    DOI: 10.1111/j.1539-6924.2006.00863.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2006.00863.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2006.00863.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    2. Carole A. Kimmel & David W. Gaylor, 1988. "Issues in Qualitative and Quantitative Risk Analysis for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 15-20, March.
    3. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Wheeler & A. John Bailer, 2012. "Monotonic Bayesian Semiparametric Benchmark Dose Analysis," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1207-1218, July.
    2. Fereshteh Kalantari & Joakim Ringblom & Salomon Sand & Mattias Öberg, 2017. "Influence of Distribution of Animals between Dose Groups on Estimated Benchmark Dose and Animal Distress for Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1716-1728, September.
    3. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    4. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    5. Marc Aerts & Matthew W. Wheeler & José Cortiñas Abrahantes, 2020. "An extended and unified modeling framework for benchmark dose estimation for both continuous and binary data," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    6. Kaatje Bollaerts & Marc Aerts & Christel Faes & Koen Grijspeerdt & Jeroen Dewulf & Koen Mintiens, 2008. "Human Salmonellosis: Estimation of Dose‐Illness from Outbreak Data," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 427-440, April.
    7. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    8. Robert B. Noble & A. John Bailer & Robert Park, 2009. "Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 558-564, April.
    9. Nilabja Guha & Anindya Roy & Leonid Kopylev & John Fox & Maria Spassova & Paul White, 2013. "Nonparametric Bayesian Methods for Benchmark Dose Estimation," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1608-1619, September.
    10. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    11. Matthew W. Wheeler & Todd Blessinger & Kan Shao & Bruce C. Allen & Louis Olszyk & J. Allen Davis & Jeffrey S Gift, 2020. "Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1706-1722, September.
    12. Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.
    13. Hojin Moon & Steven B. Kim & James J. Chen & Nysia I. George & Ralph L. Kodell, 2013. "Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 220-231, February.
    14. Sushil B. Tamrakar & Anne Haluska & Charles N. Haas & Timothy A. Bartrand, 2011. "Dose‐Response Model of Coxiella burnetii (Q Fever)," Risk Analysis, John Wiley & Sons, vol. 31(1), pages 120-128, January.
    15. An Creemers & Marc Aerts & Niel Hens & Ziv Shkedy & Frank De Smet & Philippe Beutels, 2011. "Revealing age-specific past and future unrelated costs of pneumococcal infections by flexible generalized estimating equations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1533-1547, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Proto, Eugenio & Rustichini, Aldo, 2012. "Life Satisfaction, Household Income and Personality Traits," The Warwick Economics Research Paper Series (TWERPS) 988, University of Warwick, Department of Economics.
    3. Adrian Adermon & Mikael Lindahl & Daniel Waldenström, 2018. "Intergenerational Wealth Mobility and the Role of Inheritance: Evidence from Multiple Generations," Economic Journal, Royal Economic Society, vol. 128(612), pages 482-513, July.
    4. Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
    5. Daniel O. Scharfstein & Paige L. Williams, 1994. "Design of Developmental Toxicity Studies for Assessing Joint Effects of Dose and Duration," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1057-1071, December.
    6. Hünermund, Paul & Czarnitzki, Dirk, 2019. "Estimating the causal effect of R&D subsidies in a pan-European program," Research Policy, Elsevier, vol. 48(1), pages 115-124.
    7. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    8. J. Michael Davis & Annie M. Jarabek & David T. Mage & Judith A. Graham, 1998. "The EPA Health Risk Assessment of Methylcyclopentadienyl Manganese Tricarbonyl (MMT)," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 57-70, February.
    9. Proto, Eugenio & Rustichini, Aldo, 2015. "Life satisfaction, income and personality," Journal of Economic Psychology, Elsevier, vol. 48(C), pages 17-32.
    10. Marcelo Cajias & Philipp Freudenreich & Anna Heller & Wolfgang Schaefers, 2018. "Censored Quantile Regressions and the Determinants of Real Estate Liquidity," ERES eres2018_203, European Real Estate Society (ERES).
    11. Marisa Rifada & Vita Ratnasari & Purhadi Purhadi, 2023. "Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
    12. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    13. Pregaldini, Damiano & Backes-Gellner, Uschi & Eisenkopf, Gerald, 2020. "Girls’ preferences for STEM and the effects of classroom gender composition: New evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 102-123.
    14. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    15. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    16. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    17. Jiří Valecký, 2017. "Calculation of Solvency Capital Requirements for Non-life Underwriting Risk Using Generalized Linear Models," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(4), pages 450-466.
    18. Paul Hünermund & Dirk Czarnitzki, 2016. "Estimating the local average treatment effect of R&D subsidies in a pan-European program," Working Papers of Department of Management, Strategy and Innovation, Leuven 541177, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    19. Carslake, David & Fraser, Abigail & Davey Smith, George & May, Margaret & Palmer, Tom & Sterne, Jonathan & Silventoinen, Karri & Tynelius, Per & Lawlor, Debbie A. & Rasmussen, Finn, 2013. "Associations of mortality with own height using son's height as an instrumental variable," Economics & Human Biology, Elsevier, vol. 11(3), pages 351-359.
    20. Noori Akhtar-Danesh, 2015. "A Comparison of Modeling Scales in Flexible Parametric Models," 2015 Stata Conference 15, Stata Users Group.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:27:y:2007:i:1:p:111-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.