IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0325770.html
   My bibliography  Save this article

Recommendations for reporting regression-based norms and the development of free-access tools to implement them in practice

Author

Listed:
  • Rok Blagus
  • Bojan Leskošek
  • Francisco B Ortega
  • Grant Tomkinson
  • Gregor Jurak

Abstract

Norm-referenced tests compare individuals to a reference or source population. Norms usually depend on individual characteristics (norm-predictors) like age, gender, etc. Regression-based norming, a type of continuous norming, allows for exact evaluation of the test-taker’s score for any combination of the norm-predictors. Regression-based norms are often presented in tables and graphs in scientific papers, where only selected centiles for some combination of norm-predictors are summarized. Therefore exact score evaluation for any combination of norm-predictors is usually impossible because it requires a detailed presentation of all estimated model parameters which are usually undisclosed. Furthermore, the fitted models, like those from the R gamlss package, may include individual data that are usually protected by law and consent, which prevent data sharing. Thus, this paper provides recommendations for publishing regression-based norms that allow precise score evaluation for any combination of the norm-predictors while protecting participant privacy. We outline specific requirements for such publications: a) the exact presentation of the underlying fitted regression model that contains the estimates of all model parameters and other information required for exact evaluation; b) computer sharable fit of the model that does not contain any sensitive information and can be used by those with programming skills to evaluate scores; and c) a web-based application that can be used by those without programming skills to use the results of the fitted model. To facilitate publication and utilization of such regression-based norms, we have developed and provided an open-source R package of tools for authors and users alike. Following our recommendations, any user can access the underlying models while data privacy is maintained. This approach ensures broad accessibility and practical application of norms, allowing other researchers to accurately interpret their individual data against such norms.

Suggested Citation

  • Rok Blagus & Bojan Leskošek & Francisco B Ortega & Grant Tomkinson & Gregor Jurak, 2025. "Recommendations for reporting regression-based norms and the development of free-access tools to implement them in practice," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-12, June.
  • Handle: RePEc:plo:pone00:0325770
    DOI: 10.1371/journal.pone.0325770
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325770
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0325770&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0325770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Proto, Eugenio & Rustichini, Aldo, "undated". "Life Satisfaction, Household Income and Personality Traits," Economic Research Papers 270640, University of Warwick - Department of Economics.
    3. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    4. Adrian Adermon & Mikael Lindahl & Daniel Waldenström, 2018. "Intergenerational Wealth Mobility and the Role of Inheritance: Evidence from Multiple Generations," Economic Journal, Royal Economic Society, vol. 128(612), pages 482-513, July.
    5. Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
    6. Hünermund, Paul & Czarnitzki, Dirk, 2019. "Estimating the causal effect of R&D subsidies in a pan-European program," Research Policy, Elsevier, vol. 48(1), pages 115-124.
    7. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    8. Proto, Eugenio & Rustichini, Aldo, 2015. "Life satisfaction, income and personality," Journal of Economic Psychology, Elsevier, vol. 48(C), pages 17-32.
    9. Marcelo Cajias & Philipp Freudenreich & Anna Heller & Wolfgang Schaefers, 2018. "Censored Quantile Regressions and the Determinants of Real Estate Liquidity," ERES eres2018_203, European Real Estate Society (ERES).
    10. Zambrano-Monserrate, Manuel A., 2024. "Labor dynamics and unions: An empirical analysis through Okun's Law," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 613-628.
    11. Marisa Rifada & Vita Ratnasari & Purhadi Purhadi, 2023. "Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
    12. Pregaldini, Damiano & Backes-Gellner, Uschi & Eisenkopf, Gerald, 2020. "Girls’ preferences for STEM and the effects of classroom gender composition: New evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 102-123.
    13. Jiří Valecký, 2017. "Calculation of Solvency Capital Requirements for Non-life Underwriting Risk Using Generalized Linear Models," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(4), pages 450-466.
    14. Paul Hünermund & Dirk Czarnitzki, 2016. "Estimating the local average treatment effect of R&D subsidies in a pan-European program," Working Papers of Department of Management, Strategy and Innovation, Leuven 541177, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    15. Carslake, David & Fraser, Abigail & Davey Smith, George & May, Margaret & Palmer, Tom & Sterne, Jonathan & Silventoinen, Karri & Tynelius, Per & Lawlor, Debbie A. & Rasmussen, Finn, 2013. "Associations of mortality with own height using son's height as an instrumental variable," Economics & Human Biology, Elsevier, vol. 11(3), pages 351-359.
    16. Noori Akhtar-Danesh, 2015. "A Comparison of Modeling Scales in Flexible Parametric Models," 2015 Stata Conference 15, Stata Users Group.
    17. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    18. Daniela Balutel & Christopher S. Henry & Kim P. Huynh & Marcel C. Voia, 2024. "Cash in the Pocket, Cash in the Cloud: Cash Holdings of Bitcoin Owners," International Journal of Central Banking, International Journal of Central Banking, vol. 20(3), pages 115-159, July.
    19. Sauerbrei, W. & Meier-Hirmer, C. & Benner, A. & Royston, P., 2006. "Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3464-3485, August.
    20. Sauerbrei, Willi & Royston, Patrick & Zapien, Karina, 2007. "Detecting an interaction between treatment and a continuous covariate: A comparison of two approaches," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 4054-4063, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0325770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.