IDEAS home Printed from https://ideas.repec.org/a/wly/mgtdec/v45y2024i4p1984-1999.html
   My bibliography  Save this article

Measuring of environment efficiency of pharmaceutical companies: Robust game cross‐efficiency data envelope analysis model

Author

Listed:
  • Menghan Shi
  • Shaojian Qu
  • Ying Ji
  • Zhisheng Peng

Abstract

With people's increasing attention to public health issues, biomedical enterprises have ushered in a good development opportunity. However, the rapid expansion of industrial scale makes the contradiction between enterprise development and environmental governance gradually emerge. This requires us to form a set of perfect environmental efficiency evaluation framework to make the evaluation of environmental development efficiency of pharmaceutical companies more objective and accurate. At present, many literatures on environmental efficiency assessment in the fields of green finance ignore the bias in comparison between different companies due to factors such as competition or resource allocation. At the same time, the existing studies lack the influence of disturbance factors on the output of efficiency evaluation data. Based on the sustainable development report of Shanghai Pharmaceutical as the research background, this study establishes an efficiency evaluation framework, which mainly includes three parts: (1) data preprocessing. Establish efficiency evaluation standard framework according to research background, collect relevant data, and process the data. (2) Calculate the game cross‐efficiency DEA model. We calculate the efficiency considering the game situation and compared with the efficiency calculated by the traditional DEA model. (3) Three different scenarios in robust optimization are introduced to reduce the uncertainty in efficiency evaluation. This paper uses the efficiency evaluation framework to evaluate the environmental efficiency of 13 pharmaceutical companies and finally gives policy recommendations.

Suggested Citation

  • Menghan Shi & Shaojian Qu & Ying Ji & Zhisheng Peng, 2024. "Measuring of environment efficiency of pharmaceutical companies: Robust game cross‐efficiency data envelope analysis model," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 45(4), pages 1984-1999, June.
  • Handle: RePEc:wly:mgtdec:v:45:y:2024:i:4:p:1984-1999
    DOI: 10.1002/mde.4113
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mde.4113
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mde.4113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    4. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    5. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    6. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    7. Ehrgott, Matthias & Holder, Allen & Nohadani, Omid, 2018. "Uncertain Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 268(1), pages 231-242.
    8. Gonzalez Hernandez, Ana & Lupton, Richard C. & Williams, Chris & Cullen, Jonathan M., 2018. "Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants," Applied Energy, Elsevier, vol. 218(C), pages 232-245.
    9. Song, Malin & Mangla, Sachin Kumar & Wang, Jianlin & Zhao, Jiajia & An, Jiafu, 2022. "Asymmetric information, “coal-to-gas” transition and coal reduction potential: An analysis using the nonparametric production frontier method," Energy Economics, Elsevier, vol. 114(C).
    10. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    11. Sadjadi, S.J. & Omrani, H., 2008. "Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies," Energy Policy, Elsevier, vol. 36(11), pages 4247-4254, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pejman Peykani & Jafar Gheidar-Kheljani & Reza Farzipoor Saen & Emran Mohammadi, 2022. "Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data," Operational Research, Springer, vol. 22(5), pages 5529-5567, November.
    2. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    3. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    4. Kai He & Nan Zhu & Wu Jiang & Chuanjin Zhu, 2022. "Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    5. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    6. Jiliang Zheng & Xiaoting Peng, 2019. "Does an Ecological Industry Chain Improve the Eco-Efficiency of an Industrial Cluster? Based on Empirical Study of an Energy-Intensive Industrial Cluster in China," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    7. Wu, Hua-qing & Shi, Yan & Xia, Qiong & Zhu, Wei-dong, 2014. "Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 163-175.
    8. Hashem Omrani & Arash Alizadeh & Ali Emrouznejad & Tamara Teplova, 2024. "Data envelopment analysis model with decision makers’ preferences: a robust credibility approach," Annals of Operations Research, Springer, vol. 339(3), pages 1269-1306, August.
    9. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    10. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    11. Huang, Hongyun & Mo, Renbian & Chen, Xingquan, 2021. "New patterns in China's regional green development: An interval Malmquist–Luenberger productivity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 161-173.
    12. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    13. George Halkos & Kleoniki Natalia Petrou, 2019. "Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy," Energies, MDPI, vol. 12(19), pages 1-32, September.
    14. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    15. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    16. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    17. Shabani, Amir & Visani, Franco & Barbieri, Paolo & Dullaert, Wout & Vigo, Daniele, 2019. "Reliable estimation of suppliers’ total cost of ownership: An imprecise data envelopment analysis model with common weights," Omega, Elsevier, vol. 87(C), pages 57-70.
    18. Xin Jiang & Yuyu Liu & Ranhang Zhao, 2019. "A Framework for Ecological Compensation Assessment: A Case Study in the Upper Hun River Basin, Northeast China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    19. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    20. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:mgtdec:v:45:y:2024:i:4:p:1984-1999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/7976 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.