IDEAS home Printed from https://ideas.repec.org/a/wly/jmoncb/v43y2011i5p993-1017.html
   My bibliography  Save this article

Differential Interpretation in the Survey of Professional Forecasters

Author

Listed:
  • SEBASTIANO MANZAN

Abstract

In this paper, I estimate a simple Bayesian learning model to expectations data from the Survey of Professional Forecasters. I reformulate the model in terms of forecast revisions, which allows one to abstract from differences in priors and to focus the analysis on the relationship between news and revisions. The empirical analysis shows that there is significant heterogeneity in the interpretation of news among forecasters, in particular at longer horizons, while it decreases closer to the forecast target date. The results also indicate a positive relationship between prior sentiment and interpretation of the signal, in the sense that relatively optimistic (pessimistic) forecasters are likely to believe that the signal under (over) estimates the future realization and assign it a low (high) weight in the forecast revision.

Suggested Citation

  • Sebastiano Manzan, 2011. "Differential Interpretation in the Survey of Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 993-1017, August.
  • Handle: RePEc:wly:jmoncb:v:43:y:2011:i:5:p:993-1017
    DOI: 10.1111/j.1538-4616.2011.00404.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1538-4616.2011.00404.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1538-4616.2011.00404.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    2. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    3. Bonham, Carl S & Cohen, Richard H, 2001. "To Aggregate, Pool, or Neither: Testing the Rational-Expectations Hypothesis Using Survey Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 278-291, July.
    4. Marc Nerlove, 1958. "Adaptive Expectations and Cobweb Phenomena," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 72(2), pages 227-240.
    5. N. Gregory Mankiw & Ricardo Reis & Justin Wolfers, 2004. "Disagreement about Inflation Expectations," NBER Chapters, in: NBER Macroeconomics Annual 2003, Volume 18, pages 209-270, National Bureau of Economic Research, Inc.
    6. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    7. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    8. Kandel, Eugene & Pearson, Neil D, 1995. "Differential Interpretation of Public Signals and Trade in Speculative Markets," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 831-872, August.
    9. Tilman Ehrbeck & Robert Waldmann, 1996. "Why Are Professional Forecasters Biased? Agency versus Behavioral Explanations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(1), pages 21-40.
    10. Eugene Kandel & Ben-Zion Zilberfarb, 1999. "Differential Interpretation Of Information In Inflation Forecasts," The Review of Economics and Statistics, MIT Press, vol. 81(2), pages 217-226, May.
    11. Gultekin Isiklar & Kajal Lahiri & Prakash Loungani, 2006. "How quickly do forecasters incorporate news? Evidence from cross‐country surveys," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 703-725, September.
    12. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    13. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    14. William A. Branch, 2004. "The Theory of Rationally Heterogeneous Expectations: Evidence from Survey Data on Inflation Expectations," Economic Journal, Royal Economic Society, vol. 114(497), pages 592-621, July.
    15. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    16. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    17. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    18. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 293-318.
    19. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    20. Clements, Michael P, 1995. "Rationality and the Role of Judgement in Macroeconomic Forecasting," Economic Journal, Royal Economic Society, vol. 105(429), pages 410-420, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benchimol, Jonathan & El-Shagi, Makram & Saadon, Yossi, 2022. "Do expert experience and characteristics affect inflation forecasts?," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 205-226.
    2. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    3. Michael P. Clements, 2022. "Individual forecaster perceptions of the persistence of shocks to GDP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 640-656, April.
    4. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    5. Roccazzella, Francesco & Candelon, Bertrand, 2022. "Should we care about ECB inflation expectations?," LIDAM Discussion Papers LFIN 2022004, Université catholique de Louvain, Louvain Finance (LFIN).
    6. Sinha, Rajesh Kumar, 2021. "Macro disagreement and analyst forecast properties," Journal of Contemporary Accounting and Economics, Elsevier, vol. 17(1).
    7. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.
    8. Li, You & Tay, Anthony, 2021. "The role of macroeconomic and policy uncertainty in density forecast dispersion," Journal of Macroeconomics, Elsevier, vol. 67(C).
    9. Giulia Piccillo & Poramapa Poonpakdee, 2021. "Effects of Macro Uncertainty on Mean Expectation and Subjective Uncertainty: Evidence from Households and Professional Forecasters," CESifo Working Paper Series 9486, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    2. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    3. Michael J. Lamla & Thomas Maag, 2012. "The Role of Media for Inflation Forecast Disagreement of Households and Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1325-1350, October.
    4. Olivier Armantier & Wändi Bruine de Bruin & Giorgio Topa & Wilbert van der Klaauw & Basit Zafar, 2015. "Inflation Expectations And Behavior: Do Survey Respondents Act On Their Beliefs?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 505-536, May.
    5. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    6. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    7. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    8. Clements, Michael P., 2012. "Do professional forecasters pay attention to data releases?," International Journal of Forecasting, Elsevier, vol. 28(2), pages 297-308.
    9. Jonas Dovern & Ulrich Fritsche, 2008. "Estimating fundamental cross-section dispersion from fixed event forecasts," Macroeconomics and Finance Series 200801, University of Hamburg, Department of Socioeconomics.
    10. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    11. Gerunov, Anton, 2014. "Критичен Преглед На Основните Подходи За Моделиране На Икономическите Очаквания [A Critical Review of Major Approaches for Modeling Economic Expectations]," MPRA Paper 68797, University Library of Munich, Germany.
    12. Robert G Murphy & Adam Rohde, 2018. "Rational Bias in Inflation Expectations," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 44(1), pages 153-171, January.
    13. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.
    14. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    15. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
    16. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    17. Marinovic, Iván & Ottaviani, Marco & Sorensen, Peter, 2013. "Forecasters’ Objectives and Strategies," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 690-720, Elsevier.
    18. Gaurav Kumar Singh & Tathagata Bandyopadhyay, 2024. "Determinants of disagreement: Learning from inflation expectations survey of households," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 326-343, March.
    19. Pedersen, Michael, 2015. "What affects the predictions of private forecasters? The role of central bank forecasts in Chile," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1043-1055.
    20. Florian Peters & Simas Kucinskas, 2018. "Measuring Biases in Expectation Formation," Tinbergen Institute Discussion Papers 18-058/IV, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jmoncb:v:43:y:2011:i:5:p:993-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0022-2879 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.