IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i6p1086-1094.html
   My bibliography  Save this article

Testing bias in professional forecasts

Author

Listed:
  • Philip Hans Franses

Abstract

Professional forecasters can rely on econometric models, on their personal expertise or on both. To accommodate for adjustments to model forecasts, this paper proposes to use two stage least squares (TSLS) (and not ordinary least squares [OLS]) for the familiar Mincer–Zarnowitz regression when examining bias in professional forecasts, where the instrumental variable is the consensus forecast. An illustration for 15 professional forecasters with their quotes for real gross domestic product (GDP) growth, inflation and unemployment for the United States documents the usefulness of this new estimation method. It also shows that TSLS suggests less bias than OLS does.

Suggested Citation

  • Philip Hans Franses, 2021. "Testing bias in professional forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1086-1094, September.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:6:p:1086-1094
    DOI: 10.1002/for.2765
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2765
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lovell, Michael C, 1986. "Tests of the Rational Expectations Hypothesis," American Economic Review, American Economic Association, vol. 76(1), pages 110-124, March.
    2. Franses,Philip Hans, 2014. "Expert Adjustments of Model Forecasts," Cambridge Books, Cambridge University Press, number 9781107441613, June.
    3. Jeong, Jinook & Maddala, G S, 1991. "Measurement Errors and Tests for Rationality," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 431-439, October.
    4. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    5. Franses,Philip Hans, 2014. "Expert Adjustments of Model Forecasts," Cambridge Books, Cambridge University Press, number 9781107081598, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carola Binder & Wesley Janson & Randal Verbrugge, 2023. "Out of Bounds: Do SPF Respondents Have Anchored Inflation Expectations?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(2-3), pages 559-576, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Hans Franses & Max Welz, 2022. "Evaluating heterogeneous forecasts for vintages of macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 829-839, July.
    2. Silva Lopes, Artur, 1994. "A "hipótese das expectativas racionais": teoria e realidade (uma visita guiada à literatura até 1992) [The "rational expectations hypothesis": theory and reality (a guided tour ," MPRA Paper 9699, University Library of Munich, Germany, revised 23 Jul 2008.
    3. Philip Hans Franses, 2019. "Model‐based forecast adjustment: With an illustration to inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(2), pages 73-80, March.
    4. Philip Hans Franses & Bert Bruijn, 2017. "Benchmarking Judgmentally Adjusted Forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 3-11, January.
    5. Philip Hans Franses, 2024. "Incorporating judgment in forecasting models in times of crisis," Futures & Foresight Science, John Wiley & Sons, vol. 6(4), December.
    6. Zvi Schwartz & Timothy Webb & Jean-Pierre I van der Rest & Larissa Koupriouchina, 2021. "Enhancing the accuracy of revenue management system forecasts: The impact of machine and human learning on the effectiveness of hotel occupancy forecast combinations across multiple forecasting horizo," Tourism Economics, , vol. 27(2), pages 273-291, March.
    7. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
    8. Michela Nardo, 2003. "The Quantification of Qualitative Survey Data: A Critical Assessment," Journal of Economic Surveys, Wiley Blackwell, vol. 17(5), pages 645-668, December.
    9. repec:lan:wpaper:413 is not listed on IDEAS
    10. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    11. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    12. Fildes, Robert & Goodwin, Paul & Onkal, Dilek, 2015. "Information use in supply chain forecasting," MPRA Paper 66034, University Library of Munich, Germany.
    13. repec:lan:wpaper:470 is not listed on IDEAS
    14. Philip Hans Franses & Max Welz, 2020. "Does More Expert Adjustment Associate with Less Accurate Professional Forecasts?," JRFM, MDPI, vol. 13(3), pages 1-8, March.
    15. Philip Hans Franses, 2018. "Prediction Intervals For Expert-Adjusted Forecasts," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 308-320, December.
    16. Philip Hans Franses, 2021. "Modeling Judgment in Macroeconomic Forecasts," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 401-417, December.
    17. Philip Franses, 2014. "Evaluating CPB’s Forecasts," De Economist, Springer, vol. 162(3), pages 215-221, September.
    18. Jing Tian & Firmin Doko Tchatoka & Thomas Goodwin, 2022. "Are internally consistent forecasts rational?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1338-1355, November.
    19. repec:lan:wpaper:425 is not listed on IDEAS
    20. repec:lan:wpaper:539557 is not listed on IDEAS
    21. Franses, Ph.H.B.F. & Maassen, N.R., 2015. "Consensus forecasters: How good are they individually and why?," Econometric Institute Research Papers EI2015-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    22. Fildes, Robert & Goodwin, Paul & Önkal, Dilek, 2019. "Use and misuse of information in supply chain forecasting of promotion effects," International Journal of Forecasting, Elsevier, vol. 35(1), pages 144-156.
    23. Petropoulos, Fotios & Goodwin, Paul & Fildes, Robert, 2017. "Using a rolling training approach to improve judgmental extrapolations elicited from forecasters with technical knowledge," International Journal of Forecasting, Elsevier, vol. 33(1), pages 314-324.
    24. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:6:p:1086-1094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.