IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v23y2014i9p1098-1114.html
   My bibliography  Save this article

Estimating Health State Utility Values From Discrete Choice Experiments—A Qaly Space Model Approach

Author

Listed:
  • Yuanyuan Gu
  • Richard Norman
  • Rosalie Viney

Abstract

Using discrete choice experiments (DCEs) to estimate health state utility values has become an important alternative to the conventional methods of Time Trade‐Off and Standard Gamble. Studies using DCEs have typically used the conditional logit to estimate the underlying utility function. The conditional logit is known for several limitations. In this paper, we propose two types of models based on the mixed logit: one using preference space and the other using quality‐adjusted life year (QALY) space, a concept adapted from the willingness‐to‐pay literature. These methods are applied to a dataset collected using the EQ‐5D. The results showcase the advantages of using QALY space and demonstrate that the preferred QALY space model provides lower estimates of the utility values than the conditional logit, with the divergence increasing with worsening health states. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Yuanyuan Gu & Richard Norman & Rosalie Viney, 2014. "Estimating Health State Utility Values From Discrete Choice Experiments—A Qaly Space Model Approach," Health Economics, John Wiley & Sons, Ltd., vol. 23(9), pages 1098-1114, September.
  • Handle: RePEc:wly:hlthec:v:23:y:2014:i:9:p:1098-1114
    DOI: 10.1002/hec.3066
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.3066
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.3066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brazier, John & Ratcliffe, Julie & Salomon, Joshua & Tsuchiya, Aki, 2016. "Measuring and Valuing Health Benefits for Economic Evaluation," OUP Catalogue, Oxford University Press, edition 2, number 9780198725923.
    2. Regier, Dean A. & Ryan, Mandy & Phimister, Euan & Marra, Carlo A., 2009. "Bayesian and classical estimation of mixed logit: An application to genetic testing," Journal of Health Economics, Elsevier, vol. 28(3), pages 598-610, May.
    3. Julie Ratcliffe & John Brazier & Aki Tsuchiya & Tara Symonds & Martin Brown, 2009. "Using DCE and ranking data to estimate cardinal values for health states for deriving a preference‐based single index from the sexual quality of life questionnaire," Health Economics, John Wiley & Sons, Ltd., vol. 18(11), pages 1261-1276, November.
    4. Nancy J. Devlin & Aki Tsuchiya & Ken Buckingham & Carl Tilling, 2011. "A uniform time trade off method for states better and worse than dead: feasibility study of the ‘lead time’ approach," Health Economics, John Wiley & Sons, Ltd., vol. 20(3), pages 348-361, March.
    5. Arne Hole & Julie Kolstad, 2012. "Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment," Empirical Economics, Springer, vol. 42(2), pages 445-469, April.
    6. Bleichrodt, Han & Wakker, Peter & Johannesson, Magnus, 1997. "Characterizing QALYs by Risk Neutrality," Journal of Risk and Uncertainty, Springer, vol. 15(2), pages 107-114, November.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    8. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    9. Zafar Hakim & Dev S. Pathak, 1999. "Modelling the EuroQol data: a comparison of discrete choice conjoint and conditional preference modelling," Health Economics, John Wiley & Sons, Ltd., vol. 8(2), pages 103-116, March.
    10. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    11. Arne Risa Hole, 2007. "Fitting mixed logit models by using maximum simulated likelihood," Stata Journal, StataCorp LP, vol. 7(3), pages 388-401, September.
    12. Yuanyuan Gu & Arne Risa Hole & Stephanie Knox, 2013. "Fitting the generalized multinomial logit model in Stata," Stata Journal, StataCorp LP, vol. 13(2), pages 382-397, June.
    13. Ryan, Mandy & Netten, Ann & Skatun, Diane & Smith, Paul, 2006. "Using discrete choice experiments to estimate a preference-based measure of outcome--An application to social care for older people," Journal of Health Economics, Elsevier, vol. 25(5), pages 927-944, September.
    14. Andrew Daly & Stephane Hess & Kenneth Train, 2012. "Assuring finite moments for willingness to pay in random coefficient models," Transportation, Springer, vol. 39(1), pages 19-31, January.
    15. Richard Scheines & Herbert Hoijtink & Anne Boomsma, 1999. "Bayesian estimation and testing of structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 37-52, March.
    16. William Greene & David Hensher, 2010. "Does scale heterogeneity across individuals matter? An empirical assessment of alternative logit models," Transportation, Springer, vol. 37(3), pages 413-428, May.
    17. Dan Rigby & Mike Burton, 2006. "Modeling Disinterest and Dislike: A Bounded Bayesian Mixed Logit Model of the UK Market for GM Food," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 485-509, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brendan Mulhern & Richard Norman & Deborah J. Street & Rosalie Viney, 2019. "One Method, Many Methodological Choices: A Structured Review of Discrete-Choice Experiments for Health State Valuation," PharmacoEconomics, Springer, vol. 37(1), pages 29-43, January.
    2. Mina Bahrampour & Joshua Byrnes & Richard Norman & Paul A. Scuffham & Martin Downes, 2020. "Discrete choice experiments to generate utility values for multi-attribute utility instruments: a systematic review of methods," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(7), pages 983-992, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haile, Kaleab K. & Tirivayi, Nyasha & Tesfaye, Wondimagegn, 2019. "Farmers’ willingness to accept payments for ecosystem services on agricultural land: The case of climate-smart agroforestry in Ethiopia," Ecosystem Services, Elsevier, vol. 39(C).
    2. Bansback, Nick & Brazier, John & Tsuchiya, Aki & Anis, Aslam, 2012. "Using a discrete choice experiment to estimate health state utility values," Journal of Health Economics, Elsevier, vol. 31(1), pages 306-318.
    3. Ajayi, V. & Reiner, D., 2020. "Consumer Willingness to Pay for Reducing the Environmental Footprint of Green Plastics," Cambridge Working Papers in Economics 20110, Faculty of Economics, University of Cambridge.
    4. Irani, Alexandra & Chalak, Ali, 2015. "Harnessing motorists’ potential demand for hybrid-electric vehicles in Lebanon: Policy options, CO2 emissions reduction and welfare gains," Transport Policy, Elsevier, vol. 42(C), pages 144-155.
    5. Arne Hole & Julie Kolstad, 2012. "Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment," Empirical Economics, Springer, vol. 42(2), pages 445-469, April.
    6. Balogh, Péter & Békési, Dániel & Gorton, Matthew & Popp, József & Lengyel, Péter, 2016. "Consumer willingness to pay for traditional food products," Food Policy, Elsevier, vol. 61(C), pages 176-184.
    7. Feil, J.-H. & Anastassiadis, F. & Mußhoff, O. & Kasten, P., 2016. "Analysing Farmers’ Preferences fo Collaborative Arrangements: An Experimental Approach," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 51, March.
    8. Arne Risa Hole & Hong Il Yoo, 2017. "The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 997-1013, November.
    9. Völker, Marc & Lienhoop, Nele, 2016. "Exploring group dynamics in deliberative choice experiments," Ecological Economics, Elsevier, vol. 123(C), pages 57-67.
    10. Kohei Imamura & Kohei Takenaka Takano & Nobuhito Mori & Tohru Nakashizuka & Shunsuke Managi, 2016. "Attitudes toward disaster-prevention risk in Japanese coastal areas: analysis of civil preference," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 209-226, May.
    11. Bansback, Nick & Brazier, John & Tsuchiya, Aki & Anis, Aslam, 2010. "Using a discrete choice experiment to estimate societal health state utility values," MPRA Paper 29933, University Library of Munich, Germany.
    12. Emily Lancsar & Peter Burge, 2014. "Choice modelling research in health economics," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 28, pages 675-687, Edward Elgar Publishing.
    13. Dissanayake,Sahan T. M. & Beyene,Abebe Damte & Bluffstone,Randall & Gebreegziabher, Zenebe & Martinsson,Peter & Mekonnen,Alemu & Toman,Michael A. & Vieider,Ferdinand M., 2015. "Preferences for REDD+ contract attributes in low-income countries : a choice experiment in Ethiopia," Policy Research Working Paper Series 7296, The World Bank.
    14. Line Bjørnskov Pedersen & Julie Riise & Arne Risa Hole & Dorte Gyrd-Hansen, 2014. "GPs' shifting agencies in choice of treatment," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 750-761, March.
    15. Svenningsen, Lea S. & Jacobsen, Jette Bredahl, 2018. "Testing the effect of changes in elicitation format, payment vehicle and bid range on the hypothetical bias for moral goods," Journal of choice modelling, Elsevier, vol. 29(C), pages 17-32.
    16. Weller, Priska & Elsasser, Peter, 2018. "Preferences for forest structural attributes in Germany – Evidence from a choice experiment," Forest Policy and Economics, Elsevier, vol. 93(C), pages 1-9.
    17. Alessandro Mengoni & Chiara Seghieri & Sabina Nuti, 2013. "The application of discrete choice experiments in health economics: a systematic review of the literature," Working Papers 201301, Scuola Superiore Sant'Anna of Pisa, Istituto di Management.
    18. Mariel, Petr & Ayala, Amaya de & Hoyos, David & Abdullah, Sabah, 2013. "Selecting random parameters in discrete choice experiment for environmental valuation: A simulation experiment," Journal of choice modelling, Elsevier, vol. 7(C), pages 44-57.
    19. Kaambwa, Billingsley & Lancsar, Emily & McCaffrey, Nicola & Chen, Gang & Gill, Liz & Cameron, Ian D. & Crotty, Maria & Ratcliffe, Julie, 2015. "Investigating consumers' and informal carers' views and preferences for consumer directed care: A discrete choice experiment," Social Science & Medicine, Elsevier, vol. 140(C), pages 81-94.
    20. Riise, Julie & Hole, Arne Risa & Gyrd-Hansen, Dorte & Skåtun, Diane, 2016. "GPs' implicit prioritization through clinical choices – evidence from three national health services," Journal of Health Economics, Elsevier, vol. 49(C), pages 169-183.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:23:y:2014:i:9:p:1098-1114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.