IDEAS home Printed from https://ideas.repec.org/a/spr/aphecp/v9y2011i1p15-27.html
   My bibliography  Save this article

Valuing child health utility 9D health states with a young adolescent sample

Author

Listed:
  • Julie Ratcliffe
  • Leah Couzner
  • Terry Flynn
  • Michael Sawyer
  • Katherine Stevens
  • John Brazier
  • Leonie Burgess

Abstract

QALYs are increasingly being utilized as a health outcome measure to calculate the benefits of new treatments and interventions within cost-utility analyses for economic evaluation. Cost-utility analyses of adolescent-specific treatment programmes are scant in comparison with those reported upon for adults and tend to incorporate the views of clinicians or adults as the main source of preferences. However, it is not clear that the views of adults are in accordance with those of adolescents on this issue. Hence, the treatments and interventions most highly valued by adults may not correspond with those most highly valued by adolescents. Ordinal methods for health state valuation may be more easily understood and interpreted by young adolescent samples than conventional approaches. The availability of young adolescent-specific health state values for the estimation of QALYs will provide new insights into the types of treatment programmes and health services that are most highly valued by young adolescents. The first objective of this study was to assess the feasibility of applying best-worst scaling (BWS) discrete-choice experiment (DCE) methods in a young adolescent sample to value health states defined by the Child Health Utility 9D (CHU9D) instrument, a new generic preference-based measure of health-related quality of life developed specifically for application in young people. The second objective was to compare BWS DCE questions (where respondents are asked to indicate the best and worst attribute for each of a number of health states, presented one at a time) with conventional time trade-off (TTO) and standard gamble (SG) questions in terms of ease of understanding and completeness. A feasibility study sample of consenting young adolescent school children (n=16) aged 11–13 years participated in a face-to-face interview in which they were asked to indicate the best and worst attribute levels from a series of health states defined by the CHU9D, presented one at a time. Participants were also randomly allocated to receive additional conventional TTO or SG questions and prompted to indicate how difficult they found them to complete. The results indicate that participants were able to readily choose ‘best’ and ‘worst’ dimension levels in each of the CHU9D health states presented to them and provide justification for their choices. Furthermore, when presented with TTO or SG questions and prompted to make comparisons, participants found the BWS DCE task easier to understand and complete. The results of this feasibility study suggest that BWS DCE methods are potentially more readily understood and interpretable by vulnerable populations (e.g. young adolescents). These findings lend support to the potential application of BWS DCE methods to undertake large-scale health state valuation studies directly with young adolescent population samples. Copyright Adis Data Information BV 2011

Suggested Citation

  • Julie Ratcliffe & Leah Couzner & Terry Flynn & Michael Sawyer & Katherine Stevens & John Brazier & Leonie Burgess, 2011. "Valuing child health utility 9D health states with a young adolescent sample," Applied Health Economics and Health Policy, Springer, vol. 9(1), pages 15-27, January.
  • Handle: RePEc:spr:aphecp:v:9:y:2011:i:1:p:15-27
    DOI: 10.2165/11536960-000000000-00000
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2165/11536960-000000000-00000
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.2165/11536960-000000000-00000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brazier, John & Ratcliffe, Julie & Salomon, Joshua & Tsuchiya, Aki, 2016. "Measuring and Valuing Health Benefits for Economic Evaluation," OUP Catalogue, Oxford University Press, edition 2, number 9780198725923.
    2. Julie Ratcliffe & John Brazier & Aki Tsuchiya & Tara Symonds & Martin Brown, 2009. "Using DCE and ranking data to estimate cardinal values for health states for deriving a preference‐based single index from the sexual quality of life questionnaire," Health Economics, John Wiley & Sons, Ltd., vol. 18(11), pages 1261-1276, November.
    3. McCabe, Christopher & Brazier, John & Gilks, Peter & Tsuchiya, Aki & Roberts, Jennifer & O'Hagan, Anthony & Stevens, Katherine, 2006. "Using rank data to estimate health state utility models," Journal of Health Economics, Elsevier, vol. 25(3), pages 418-431, May.
    4. Flynn, Terry N. & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2007. "Best-worst scaling: What it can do for health care research and how to do it," Journal of Health Economics, Elsevier, vol. 26(1), pages 171-189, January.
    5. Ryan, Mandy & Netten, Ann & Skatun, Diane & Smith, Paul, 2006. "Using discrete choice experiments to estimate a preference-based measure of outcome--An application to social care for older people," Journal of Health Economics, Elsevier, vol. 25(5), pages 927-944, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axel C. Mühlbacher & Anika Kaczynski & Peter Zweifel & F. Reed Johnson, 2016. "Experimental measurement of preferences in health and healthcare using best-worst scaling: an overview," Health Economics Review, Springer, vol. 6(1), pages 1-14, December.
    2. Richard De Abreu Lourenço & Nancy Devlin & Kirsten Howard & Jason J. Ong & Julie Ratcliffe & Jo Watson & Esther Willing & Elisabeth Huynh, 2021. "Giving a Voice to Marginalised Groups for Health Care Decision Making," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 14(1), pages 5-10, January.
    3. Axel Mühlbacher & Anika Kaczynski & Peter Zweifel & F. Johnson, 2015. "Experimental measurement of preferences in health and healthcare using best-worst scaling: an overview," Health Economics Review, Springer, vol. 6(1), pages 1-14, December.
    4. Edward J. D. Webb & John O’Dwyer & David Meads & Paul Kind & Penny Wright, 2020. "Transforming discrete choice experiment latent scale values for EQ-5D-3L using the visual analogue scale," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(5), pages 787-800, July.
    5. Jiang, Shan & Gu, Yuanyuan & Yang, Fan & Wu, Tao & Wang, Hui & Cutler, Henry & Zhang, Lufa, 2020. "Tertiary hospitals or community clinics? An enquiry into the factors affecting patients' choice for healthcare facilities in urban China," China Economic Review, Elsevier, vol. 63(C).
    6. Osman, Ahmed M.Y. & Wu, Jing & He, Xiaoning & Chen, Gang, 2021. "Eliciting SF-6Dv2 health state utilities using an anchored best-worst scaling technique," Social Science & Medicine, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bansback, Nick & Brazier, John & Tsuchiya, Aki & Anis, Aslam, 2012. "Using a discrete choice experiment to estimate health state utility values," Journal of Health Economics, Elsevier, vol. 31(1), pages 306-318.
    2. John Brazier & Donna Rowen & Yaling Yang & Aki Tsuchiya, 2012. "Comparison of health state utility values derived using time trade-off, rank and discrete choice data anchored on the full health-dead scale," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(5), pages 575-587, October.
    3. Bansback, Nick & Brazier, John & Tsuchiya, Aki & Anis, Aslam, 2010. "Using a discrete choice experiment to estimate societal health state utility values," MPRA Paper 29933, University Library of Munich, Germany.
    4. Stevens, K, 2010. "Valuation of the Child Health Utility Index 9D (CHU9D)," MPRA Paper 29938, University Library of Munich, Germany.
    5. Terry Flynn, 2010. "Using Conjoint Analysis and Choice Experiments to Estimate QALY Values," PharmacoEconomics, Springer, vol. 28(9), pages 711-722, September.
    6. Rowen, D & Brazier, J & Tsuchiya, A & Hernández, M & Ibbotson, R, 2009. "The simultaneous valuation of states from multiple instruments using ranking and VAS data: methods and preliminary results," MPRA Paper 29841, University Library of Munich, Germany.
    7. Rosalie Viney & Richard Norman & John Brazier & Paula Cronin & Madeleine T. King & Julie Ratcliffe & Deborah Street, 2014. "An Australian Discrete Choice Experiment To Value Eq‐5d Health States," Health Economics, John Wiley & Sons, Ltd., vol. 23(6), pages 729-742, June.
    8. Mina Bahrampour & Joshua Byrnes & Richard Norman & Paul A. Scuffham & Martin Downes, 2020. "Discrete choice experiments to generate utility values for multi-attribute utility instruments: a systematic review of methods," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(7), pages 983-992, September.
    9. Yuanyuan Gu & Richard Norman & Rosalie Viney, 2014. "Estimating Health State Utility Values From Discrete Choice Experiments—A Qaly Space Model Approach," Health Economics, John Wiley & Sons, Ltd., vol. 23(9), pages 1098-1114, September.
    10. Katherine Stevens, 2012. "Valuation of the Child Health Utility 9D Index," PharmacoEconomics, Springer, vol. 30(8), pages 729-747, August.
    11. Julie Ratcliffe & Terry Flynn & Frances Terlich & Katherine Stevens & John Brazier & Michael Sawyer, 2012. "Developing Adolescent-Specific Health State Values for Economic Evaluation," PharmacoEconomics, Springer, vol. 30(8), pages 713-727, August.
    12. Brazier, J & Rowen, D & Yang, Y & Tsuchiya, A, 2009. "Using rank and discrete choice data to estimate health state utility values on the QALY scale," MPRA Paper 29891, University Library of Munich, Germany.
    13. Emily Lancsar & Peter Burge, 2014. "Choice modelling research in health economics," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 28, pages 675-687, Edward Elgar Publishing.
    14. Julie Ratcliffe & John Brazier & Aki Tsuchiya & Tara Symonds & Martin Brown, 2009. "Using DCE and ranking data to estimate cardinal values for health states for deriving a preference‐based single index from the sexual quality of life questionnaire," Health Economics, John Wiley & Sons, Ltd., vol. 18(11), pages 1261-1276, November.
    15. Juan Ramos-Goñi & Oliver Rivero-Arias & María Errea & Elly Stolk & Michael Herdman & Juan Cabasés, 2013. "Dealing with the health state ‘dead’ when using discrete choice experiments to obtain values for EQ-5D-5L heath states," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(1), pages 33-42, July.
    16. Makai, Peter & Brouwer, Werner B.F. & Koopmanschap, Marc A. & Stolk, Elly A. & Nieboer, Anna P., 2014. "Quality of life instruments for economic evaluations in health and social care for older people: A systematic review," Social Science & Medicine, Elsevier, vol. 102(C), pages 83-93.
    17. Terry N. Flynn & Elisabeth Huynh & Tim J. Peters & Hareth Al‐Janabi & Sam Clemens & Alison Moody & Joanna Coast, 2015. "Scoring the Icecap‐a Capability Instrument. Estimation of a UK General Population Tariff," Health Economics, John Wiley & Sons, Ltd., vol. 24(3), pages 258-269, March.
    18. Hareth Al‐Janabi, 2018. "Do capability and functioning differ? A study of U.K. survey responses," Health Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 465-479, March.
    19. Paul F M Krabbe, 2013. "A Generalized Measurement Model to Quantify Health: The Multi-Attribute Preference Response Model," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    20. Alexander M M Arons & Paul F M Krabbe, 2014. "Quantification of Health by Scaling Similarity Judgments," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aphecp:v:9:y:2011:i:1:p:15-27. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.