IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v157y2016icp48-59.html
   My bibliography  Save this article

Valuing the Child Health Utility 9D: Using profile case best worst scaling methods to develop a new adolescent specific scoring algorithm

Author

Listed:
  • Ratcliffe, Julie
  • Huynh, Elisabeth
  • Chen, Gang
  • Stevens, Katherine
  • Swait, Joffre
  • Brazier, John
  • Sawyer, Michael
  • Roberts, Rachel
  • Flynn, Terry

Abstract

In contrast to the recent proliferation of studies incorporating ordinal methods to generate health state values from adults, to date relatively few studies have utilised ordinal methods to generate health state values from adolescents. This paper reports upon a study to apply profile case best worst scaling methods to derive a new adolescent specific scoring algorithm for the Child Health Utility 9D (CHU9D), a generic preference based instrument that has been specifically designed for the estimation of quality adjusted life years for the economic evaluation of health care treatment and preventive programs targeted at young people. A survey was developed for administration in an on-line format in which consenting community based Australian adolescents aged 11–17 years (N = 1982) indicated the best and worst features of a series of 10 health states derived from the CHU9D descriptive system. The data were analyzed using latent class conditional logit models to estimate values (part worth utilities) for each level of the nine attributes relating to the CHU9D. A marginal utility matrix was then estimated to generate an adolescent-specific scoring algorithm on the full health = 1 and dead = 0 scale required for the calculation of QALYs. It was evident that different decision processes were being used in the best and worst choices. Whilst respondents appeared readily able to choose ‘best’ attribute levels for the CHU9D health states, a large amount of random variability and indeed different decision rules were evident for the choice of ‘worst’ attribute levels, to the extent that the best and worst data should not be pooled from the statistical perspective. The optimal adolescent-specific scoring algorithm was therefore derived using data obtained from the best choices only. The study provides important insights into the use of profile case best worst scaling methods to generate health state values with adolescent populations.

Suggested Citation

  • Ratcliffe, Julie & Huynh, Elisabeth & Chen, Gang & Stevens, Katherine & Swait, Joffre & Brazier, John & Sawyer, Michael & Roberts, Rachel & Flynn, Terry, 2016. "Valuing the Child Health Utility 9D: Using profile case best worst scaling methods to develop a new adolescent specific scoring algorithm," Social Science & Medicine, Elsevier, vol. 157(C), pages 48-59.
  • Handle: RePEc:eee:socmed:v:157:y:2016:i:c:p:48-59
    DOI: 10.1016/j.socscimed.2016.03.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953616301423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2016.03.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brazier, John & Ratcliffe, Julie & Salomon, Joshua & Tsuchiya, Aki, 2016. "Measuring and Valuing Health Benefits for Economic Evaluation," OUP Catalogue, Oxford University Press, edition 2, number 9780198725923.
    2. Hensher, David A., 2012. "Accounting for scale heterogeneity within and between pooled data sources," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 480-486.
    3. Gang Chen & Julie Ratcliffe, 2015. "A Review of the Development and Application of Generic Multi-Attribute Utility Instruments for Paediatric Populations," PharmacoEconomics, Springer, vol. 33(10), pages 1013-1028, October.
    4. Flynn, Terry Nicholas & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2010. "Using discrete choice experiments to understand preferences for quality of life. Variance-scale heterogeneity matters," Social Science & Medicine, Elsevier, vol. 70(12), pages 1957-1965, June.
    5. Brazier, John & Roberts, Jennifer & Deverill, Mark, 2002. "The estimation of a preference-based measure of health from the SF-36," Journal of Health Economics, Elsevier, vol. 21(2), pages 271-292, March.
    6. Terry N. Flynn & Elisabeth Huynh & Tim J. Peters & Hareth Al‐Janabi & Sam Clemens & Alison Moody & Joanna Coast, 2015. "Scoring the Icecap‐a Capability Instrument. Estimation of a UK General Population Tariff," Health Economics, John Wiley & Sons, Ltd., vol. 24(3), pages 258-269, March.
    7. Emily Lancsar & Joffre Swait, 2014. "Reconceptualising the External Validity of Discrete Choice Experiments," PharmacoEconomics, Springer, vol. 32(10), pages 951-965, October.
    8. Andrew J Lloyd, 2003. "Threats to the estimation of benefit: are preference elicitation methods accurate?," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 393-402, May.
    9. Julie Ratcliffe & Gang Chen & Katherine Stevens & Sandra Bradley & Leah Couzner & John Brazier & Michael Sawyer & Rachel Roberts & Elisabeth Huynh & Terry Flynn, 2015. "Valuing Child Health Utility 9D Health States with Young Adults: Insights from a Time Trade Off Study," Applied Health Economics and Health Policy, Springer, vol. 13(5), pages 485-492, October.
    10. Katherine Stevens, 2012. "Valuation of the Child Health Utility 9D Index," PharmacoEconomics, Springer, vol. 30(8), pages 729-747, August.
    11. Swait, Joffre & Bernardino, Adriana, 2000. "Distinguishing taste variation from error structure in discrete choice data," Transportation Research Part B: Methodological, Elsevier, vol. 34(1), pages 1-15, January.
    12. Ben-Akiva, Moshe & Morikawa, Takayuki & Shiroishi, Fumiaki, 1992. "Analysis of the reliability of preference ranking data," Journal of Business Research, Elsevier, vol. 24(2), pages 149-164, March.
    13. Han Bleichrodt, 2002. "A new explanation for the difference between time trade‐off utilities and standard gamble utilities," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 447-456, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernest H. Law & Annika L. Pickard & Anika Kaczynski & A. Simon Pickard, 2017. "Choice Blindness and Health-State Choices among Adolescents and Adults," Medical Decision Making, , vol. 37(6), pages 680-687, August.
    2. Richard De Abreu Lourenço & Nancy Devlin & Kirsten Howard & Jason J. Ong & Julie Ratcliffe & Jo Watson & Esther Willing & Elisabeth Huynh, 2021. "Giving a Voice to Marginalised Groups for Health Care Decision Making," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 14(1), pages 5-10, January.
    3. Aizaki, Hideo & Fogarty, James, 2019. "An R package and tutorial for case 2 best–worst scaling," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    4. Tosin Lambe & Emma Frew & Natalie J. Ives & Rebecca L. Woolley & Carole Cummins & Elizabeth A. Brettell & Emma N. Barsoum & Nicholas J. A. Webb, 2018. "Mapping the Paediatric Quality of Life Inventory (PedsQL™) Generic Core Scales onto the Child Health Utility Index–9 Dimension (CHU-9D) Score for Economic Evaluation in Children," PharmacoEconomics, Springer, vol. 36(4), pages 451-465, April.
    5. Mo Zhou & Winter Maxwell Thayer & John F. P. Bridges, 2018. "Using Latent Class Analysis to Model Preference Heterogeneity in Health: A Systematic Review," PharmacoEconomics, Springer, vol. 36(2), pages 175-187, February.
    6. Coast, Joanna, 2018. "A history that goes hand in hand: Reflections on the development of health economics and the role played by Social Science & Medicine, 1967–2017," Social Science & Medicine, Elsevier, vol. 196(C), pages 227-232.
    7. Valentina Prevolnik Rupel & Marko Ogorevc, 2021. "EQ-5D-Y Value Set for Slovenia," PharmacoEconomics, Springer, vol. 39(4), pages 463-471, April.
    8. Joanna Coast, 2019. "Assessing capability in economic evaluation: a life course approach?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(6), pages 779-784, August.
    9. Karin Dam Petersen & Gang Chen & Christine Mpundu-Kaambwa & Katherine Stevens & John Brazier & Julie Ratcliffe, 2018. "Measuring Health-Related Quality of Life in Adolescent Populations: An Empirical Comparison of the CHU9D and the PedsQLTM 4.0 Short Form 15," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 11(1), pages 29-37, February.
    10. Rajan Sharma & Yuanyuan Gu & Teresa Y. C. Ching & Vivienne Marnane & Bonny Parkinson, 2019. "Economic Evaluations of Childhood Hearing Loss Screening Programmes: A Systematic Review and Critique," Applied Health Economics and Health Policy, Springer, vol. 17(3), pages 331-357, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine Stevens, 2012. "Valuation of the Child Health Utility 9D Index," PharmacoEconomics, Springer, vol. 30(8), pages 729-747, August.
    2. Potoglou, Dimitris & Burge, Peter & Flynn, Terry & Netten, Ann & Malley, Juliette & Forder, Julien & Brazier, John E., 2011. "Best-worst scaling vs. discrete choice experiments: An empirical comparison using social care data," Social Science & Medicine, Elsevier, vol. 72(10), pages 1717-1727, May.
    3. Huynh, Elisabeth & Coast, Joanna & Rose, John & Kinghorn, Philip & Flynn, Terry, 2017. "Values for the ICECAP-Supportive Care Measure (ICECAP-SCM) for use in economic evaluation at end of life," Social Science & Medicine, Elsevier, vol. 189(C), pages 114-128.
    4. Donna Rowen & Oliver Rivero-Arias & Nancy Devlin & Julie Ratcliffe, 2020. "Review of Valuation Methods of Preference-Based Measures of Health for Economic Evaluation in Child and Adolescent Populations: Where are We Now and Where are We Going?," PharmacoEconomics, Springer, vol. 38(4), pages 325-340, April.
    5. Julie Ratcliffe & Elisabeth Huynh & Katherine Stevens & John Brazier & Michael Sawyer & Terry Flynn, 2016. "Nothing About Us Without Us? A Comparison of Adolescent and Adult Health‐State Values for the Child Health Utility‐9D Using Profile Case Best–Worst Scaling," Health Economics, John Wiley & Sons, Ltd., vol. 25(4), pages 486-496, April.
    6. Joseph Kwon & Sung Wook Kim & Wendy J. Ungar & Kate Tsiplova & Jason Madan & Stavros Petrou, 2018. "A Systematic Review and Meta-analysis of Childhood Health Utilities," Medical Decision Making, , vol. 38(3), pages 277-305, April.
    7. Karin Dam Petersen & Gang Chen & Christine Mpundu-Kaambwa & Katherine Stevens & John Brazier & Julie Ratcliffe, 2018. "Measuring Health-Related Quality of Life in Adolescent Populations: An Empirical Comparison of the CHU9D and the PedsQLTM 4.0 Short Form 15," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 11(1), pages 29-37, February.
    8. McCabe, Christopher & Brazier, John & Gilks, Peter & Tsuchiya, Aki & Roberts, Jennifer & O'Hagan, Anthony & Stevens, Katherine, 2006. "Using rank data to estimate health state utility models," Journal of Health Economics, Elsevier, vol. 25(3), pages 418-431, May.
    9. Kim Dalziel & Max Catchpool & Borja García-Lorenzo & Inigo Gorostiza & Richard Norman & Oliver Rivero-Arias, 2020. "Feasibility, Validity and Differences in Adolescent and Adult EQ-5D-Y Health State Valuation in Australia and Spain: An Application of Best–Worst Scaling," PharmacoEconomics, Springer, vol. 38(5), pages 499-513, May.
    10. Stevens, K, 2010. "Valuation of the Child Health Utility Index 9D (CHU9D)," MPRA Paper 29938, University Library of Munich, Germany.
    11. Brazier, JE & Yang, Y & Tsuchiya, A, 2008. "A review of studies mapping (or cross walking) from non-preference based measures of health to generic preference-based measures," MPRA Paper 29808, University Library of Munich, Germany.
    12. Ian M. McCarthy, 2015. "Putting the Patient in Patient Reported Outcomes: A Robust Methodology for Health Outcomes Assessment," Health Economics, John Wiley & Sons, Ltd., vol. 24(12), pages 1588-1603, December.
    13. Bruno Casal & Eva Rodríguez-Míguez & Berta Rivera, 0. "Measuring intangible cost-of-morbidity due to substance dependence: implications of using alternative preference-based instruments," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 0, pages 1-10.
    14. Valentina Prevolnik Rupel & Marko Ogorevc, 2021. "EQ-5D-Y Value Set for Slovenia," PharmacoEconomics, Springer, vol. 39(4), pages 463-471, April.
    15. Engel, Lidia & Bryan, Stirling & Noonan, Vanessa K. & Whitehurst, David G.T., 2018. "Using path analysis to investigate the relationships between standardized instruments that measure health-related quality of life, capability wellbeing and subjective wellbeing: An application in the ," Social Science & Medicine, Elsevier, vol. 213(C), pages 154-164.
    16. Brazier, John & Rowen, Donna & Tsuchiya, Aki & Yang, Yaling & Young, Tracy A., 2011. "The impact of adding an extra dimension to a preference-based measure," Social Science & Medicine, Elsevier, vol. 73(2), pages 245-253, July.
    17. Mitchell, Paul Mark & Roberts, Tracy E. & Barton, Pelham M. & Coast, Joanna, 2015. "Assessing sufficient capability: A new approach to economic evaluation," Social Science & Medicine, Elsevier, vol. 139(C), pages 71-79.
    18. Arthur E. Attema & Han Bleichrodt & Olivier l’Haridon & Stefan A. Lipman, 2020. "A comparison of individual and collective decision making for standard gamble and time trade-off," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(3), pages 465-473, April.
    19. Bruno Casal & Eva Rodríguez-Míguez & Berta Rivera, 2020. "Measuring intangible cost-of-morbidity due to substance dependence: implications of using alternative preference-based instruments," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(7), pages 1039-1048, September.
    20. Nancy J. Devlin & Koonal K. Shah & Yan Feng & Brendan Mulhern & Ben van Hout, 2018. "Valuing health‐related quality of life: An EQ‐5D‐5L value set for England," Health Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 7-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:157:y:2016:i:c:p:48-59. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.