IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v5y2015i4p374-388.html
   My bibliography  Save this article

Environmental isotopes in CO 2 geological sequestration

Author

Listed:
  • Jie Li
  • Zhonghe Pang

Abstract

Carbon dioxide capture and sequestration (CCS) in deep geological formations has recently emerged as an important option for reducing greenhouse gas (GHG) emissions, and due to the complexity of the issue, CCS has turned into a multiple‐discipline research area. Environmental isotopes have been used in various CCS projects worldwide for evaluating trapping mechanisms, selecting storage sites, and monitoring for storage safety. Environmental isotopes are found useful in the investigation of many CCS issues and are particularly effective in identifying phase states (free, dissolved, and mineral state), and in quantifying structural, solubility, and mineral trapping forms of CO 2 . We used published laboratory results to successfully verify different methods for quantifying structural trapping mechanisms. Our results show that, in short time scales, saturation of the formation with free CO 2 ‐phase can be obtained from oxygen isotope measurements on CO 2 and/or reservoir brine, and carbon isotope of dissolved inorganic carbon can be used to trace dissolution in brine. Carbon isotopes and other parameters, such as CO 2 /-super-3He ratio, can also be used to confirm the mineral trapping mechanism in natural gas fields. Environmental isotopes can also be used to distinguish mineralogical composition of formations, and to identify hydrodynamic conditions for site selection in addition to monitor potential CO 2 leakage. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Jie Li & Zhonghe Pang, 2015. "Environmental isotopes in CO 2 geological sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 374-388, August.
  • Handle: RePEc:wly:greenh:v:5:y:2015:i:4:p:374-388
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1495
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emberley, S. & Hutcheon, I. & Shevalier, M. & Durocher, K. & Gunter, W.D. & Perkins, E.H., 2004. "Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada," Energy, Elsevier, vol. 29(9), pages 1393-1401.
    2. Arts, R. & Eiken, O. & Chadwick, A. & Zweigel, P. & van der Meer, L. & Zinszner, B., 2004. "Monitoring of CO2 injected at Sleipner using time-lapse seismic data," Energy, Elsevier, vol. 29(9), pages 1383-1392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiman Li & Zhonghe Pang, 2017. "Hydrogeochemical characteristics of deep saline aquifers in sedimentary basins in China and implications for CO 2 geological storage with emphasis on total dissolved solids (TDS) and water type," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 53-64, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Jinjin & Jiang, Xi, 2017. "A case study of using cosmic ray muons to monitor supercritical CO2 migration in geological formations," Applied Energy, Elsevier, vol. 185(P2), pages 1450-1458.
    2. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    3. R. Andrew Chadwick & David J. Noy, 2015. "Underground CO2 storage: demonstrating regulatory conformance by convergence of history‐matched modeled and observed CO2 plume behavior using Sleipner time‐lapse seismics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 305-322, June.
    4. Kolditz, O. & Bauer, S. & Böttcher, N. & Elsworth, D. & Görke, U.-J. & McDermott, C.-I. & Park, C.-H. & Singh, A.K. & Taron, J. & Wang, W., 2012. "Numerical simulation of two-phase flow in deformable porous media: Application to carbon dioxide storage in the subsurface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(10), pages 1919-1935.
    5. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    6. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    7. Li, Pengliang & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Xuan & Wan, Song & Ma, Yuanyuan & He, Yanghua, 2021. "Investigation on the limiting oxygen concentration of combustible gas at high pressures and temperatures during oil recovery process," Energy, Elsevier, vol. 215(PB).
    8. Yiman Li & Zhonghe Pang, 2015. "Quantitative assessment of CO 2 storage capacity by using of hydrogeochemical and isotope data for deep saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(5), pages 592-602, October.
    9. Masoud Ahmadinia & Seyed M. Shariatipour, 2020. "Analysing the role of caprock morphology on history matching of Sleipner CO2 plume using an optimisation method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1077-1097, October.
    10. Zhang, Fengming & Xu, Chunyan & Zhang, Yong & Chen, Shouyan & Chen, Guifang & Ma, Chunyuan, 2014. "Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties," Energy, Elsevier, vol. 66(C), pages 577-587.
    11. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    12. Bo Liu & Fangyuan Zhao & Jinpeng Xu & Yueming Qi, 2019. "Experimental Investigation and Numerical Simulation of CO 2 –Brine–Rock Interactions during CO 2 Sequestration in a Deep Saline Aquifer," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    13. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    14. Delgado, Montserrat Rodriguez & Arean, Carlos Otero, 2011. "Carbon monoxide, dinitrogen and carbon dioxide adsorption on zeolite H-Beta: IR spectroscopic and thermodynamic studies," Energy, Elsevier, vol. 36(8), pages 5286-5291.
    15. Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
    16. Seyyed A. Hosseini & Masoud Alfi, 2016. "Time‐lapse application of pressure transient analysis for monitoring compressible fluid leakage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 352-369, June.
    17. Ariesty R. K. Asikin & Awali Priyono & Tutuka Ariadji & Benyamin Sapiie & Mohammad R. Sule & Takeshi Tsuji & Wawan Gunawan A. Kadir & Toshifumi Matsuoka & Sigit Rahardjo, 2018. "Forward Modeling Time-Lapse Seismic based on Reservoir Simulation Result on The CCS Project at Gundih Field, Indonesia," Modern Applied Science, Canadian Center of Science and Education, vol. 12(1), pages 1-75, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:5:y:2015:i:4:p:374-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.