IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v82y2012i10p1919-1935.html
   My bibliography  Save this article

Numerical simulation of two-phase flow in deformable porous media: Application to carbon dioxide storage in the subsurface

Author

Listed:
  • Kolditz, O.
  • Bauer, S.
  • Böttcher, N.
  • Elsworth, D.
  • Görke, U.-J.
  • McDermott, C.-I.
  • Park, C.-H.
  • Singh, A.K.
  • Taron, J.
  • Wang, W.

Abstract

In this paper, conceptual modeling as well as numerical simulation of two-phase flow in deep, deformable geological formations induced by CO2 injection are presented. The conceptual approach is based on balance equations for mass, momentum and energy completed by appropriate constitutive relations for the fluid phases as well as the solid matrix. Within the context of the primary effects under consideration, the fluid motion will be expressed by the extended Darcy's law for two phase flow. Additionally, constraint conditions for the partial saturations and the pressure fractions of carbon dioxide and brine are defined. To characterize the stress state in the solid matrix, the effective stress principle is applied. Furthermore, the interaction of fluid and solid phases is illustrated by constitutive models for capillary pressure, porosity and permeability as functions of saturation. Based on this conceptual model, a coupled system of nonlinear differential equations for two-phase flow in a deformable porous matrix (H2M model) is formulated. As the displacement vector acts as primary variable for the solid matrix, multiphase flow is simulated using both pressure/pressure or pressure/saturation formulations. An object-oriented finite element method is used to solve the multi-field problem numerically. The capabilities of the model and the numerical tools to treat complex processes during CO2 sequestration are demonstrated on three benchmark examples: (1) a 1-D case to investigate the influence of variable fluid properties, (2) 2-D vertical axi-symmetric cross-section to study the interaction between hydraulic and deformation processes, and (3) 3-D to test the stability and computational costs of the H2M model for real applications.

Suggested Citation

  • Kolditz, O. & Bauer, S. & Böttcher, N. & Elsworth, D. & Görke, U.-J. & McDermott, C.-I. & Park, C.-H. & Singh, A.K. & Taron, J. & Wang, W., 2012. "Numerical simulation of two-phase flow in deformable porous media: Application to carbon dioxide storage in the subsurface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(10), pages 1919-1935.
  • Handle: RePEc:eee:matcom:v:82:y:2012:i:10:p:1919-1935
    DOI: 10.1016/j.matcom.2012.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475412001450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2012.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arts, R. & Eiken, O. & Chadwick, A. & Zweigel, P. & van der Meer, L. & Zinszner, B., 2004. "Monitoring of CO2 injected at Sleipner using time-lapse seismic data," Energy, Elsevier, vol. 29(9), pages 1383-1392.
    2. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grunwald, Norbert & Maßmann, Jobst & Kolditz, Olaf & Nagel, Thomas, 2020. "Non-iterative phase-equilibrium model of the H2O-CO2-NaCl-system for large-scale numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 46-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2014. "On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems," Energy, Elsevier, vol. 69(C), pages 409-418.
    2. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    3. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2013. "Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced C," Applied Energy, Elsevier, vol. 102(C), pages 1314-1323.
    4. R. Andrew Chadwick & David J. Noy, 2015. "Underground CO2 storage: demonstrating regulatory conformance by convergence of history‐matched modeled and observed CO2 plume behavior using Sleipner time‐lapse seismics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 305-322, June.
    5. Patel, Milan J. & May, Eric F. & Johns, Michael L., 2016. "High-fidelity reservoir simulations of enhanced gas recovery with supercritical CO2," Energy, Elsevier, vol. 111(C), pages 548-559.
    6. Zhong, Jinjin & Jiang, Xi, 2017. "A case study of using cosmic ray muons to monitor supercritical CO2 migration in geological formations," Applied Energy, Elsevier, vol. 185(P2), pages 1450-1458.
    7. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    8. Patel, Milan J. & May, Eric F. & Johns, Michael L., 2017. "Inclusion of connate water in enhanced gas recovery reservoir simulations," Energy, Elsevier, vol. 141(C), pages 757-769.
    9. Jie Li & Zhonghe Pang, 2015. "Environmental isotopes in CO 2 geological sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 374-388, August.
    10. Psaltis, Steven & Farrell, Troy & Burrage, Kevin & Burrage, Pamela & McCabe, Peter & Moroney, Timothy & Turner, Ian & Mazumder, Saikat, 2015. "Mathematical modelling of gas production and compositional shift of a CSG (coal seam gas) field: Local model development," Energy, Elsevier, vol. 88(C), pages 621-635.
    11. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    12. Ziabakhsh-Ganji, Zaman & Kooi, Henk, 2014. "Sensitivity of Joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs," Applied Energy, Elsevier, vol. 113(C), pages 434-451.
    13. Masoud Ahmadinia & Seyed M. Shariatipour, 2020. "Analysing the role of caprock morphology on history matching of Sleipner CO2 plume using an optimisation method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1077-1097, October.
    14. Nagel, T. & Shao, H. & Singh, A.K. & Watanabe, N. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermochemical heat storage in porous media: Part 1 – Conceptual model," Energy, Elsevier, vol. 60(C), pages 254-270.
    15. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    16. Duan, Jimiao & Gong, Jing & Yao, Haiyuan & Deng, Tao & Zhou, Jun, 2014. "Numerical modeling for stratified gas–liquid flow and heat transfer in pipeline," Applied Energy, Elsevier, vol. 115(C), pages 83-94.
    17. Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
    18. Seyyed A. Hosseini & Masoud Alfi, 2016. "Time‐lapse application of pressure transient analysis for monitoring compressible fluid leakage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 352-369, June.
    19. Biswal, Pratibha & Basak, Tanmay, 2014. "Bejan's heatlines and numerical visualization of convective heat flow in differentially heated enclosures with concave/convex side walls," Energy, Elsevier, vol. 64(C), pages 69-94.
    20. Ariesty R. K. Asikin & Awali Priyono & Tutuka Ariadji & Benyamin Sapiie & Mohammad R. Sule & Takeshi Tsuji & Wawan Gunawan A. Kadir & Toshifumi Matsuoka & Sigit Rahardjo, 2018. "Forward Modeling Time-Lapse Seismic based on Reservoir Simulation Result on The CCS Project at Gundih Field, Indonesia," Modern Applied Science, Canadian Center of Science and Education, vol. 12(1), pages 1-75, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:82:y:2012:i:10:p:1919-1935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.