IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v11y2021i2p342-359.html
   My bibliography  Save this article

Visual investigation of CO2 dissolution and convection in heterogeneous porous media at reservoir temperature and pressure conditions

Author

Listed:
  • Widuramina Sameendranath Amarasinghe
  • Ingebret Fjelde
  • Anna Maija Nørstebø Flaata

Abstract

CO2 convective mixing in saline aquifers has been widely studied numerically and experimentally. Reservoir heterogeneity is significant for CO2 convective mixing and experimental studies are still limited. In this study, we have conducted a visualization of CO2 convective mixing experiments in heterogeneous porous media at reservoir conditions using CO2 and water. We have used a two‐dimension Hele–Shaw cell, different glass beads of different permeability at porous media, and water solution with pH indicator. Glass beads were packed in a different way (horizontally and vertically) to generate the heterogeneity inside the test cell. We have studied transport velocity deviation due to the heterogeneity and effects of permeability transition zone together with the effects of boundary conditions. It was found out that having a low permeable layer below a high permeable layer restructure the flow of CO2 fingers and dampens the CO2 transport velocity. With the vertical permeability zones, having a high permeability zone accelerates CO2 gravity transport through that zone which is a good representation for a fracture or a fault in the reservoir. CO2 convection onset is governed by the vertical high‐permeable layer. Boundary conditions have been dominant with the presence of high permeable zones. It also found out that the experimental results presented in this study match with the simulation studies that are available in the literature. © 2021 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.

Suggested Citation

  • Widuramina Sameendranath Amarasinghe & Ingebret Fjelde & Anna Maija Nørstebø Flaata, 2021. "Visual investigation of CO2 dissolution and convection in heterogeneous porous media at reservoir temperature and pressure conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 342-359, April.
  • Handle: RePEc:wly:greenh:v:11:y:2021:i:2:p:342-359
    DOI: 10.1002/ghg.2055
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2055
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    2. Carelle Thomas & Sam Dehaeck & Anne De Wit, 2018. "Convective dissolution of CO2 in water and salt solutions," ULB Institutional Repository 2013/270512, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    2. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    3. Christian Leßmann & Arne Steinkraus, 2016. "Climate Notes: “Carbon Capture and Storage” – What is the Cost of Cutting Emissions?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(05), pages 51-54, March.
    4. Aydin, Gokhan & Karakurt, Izzet & Aydiner, Kerim, 2010. "Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety," Energy Policy, Elsevier, vol. 38(9), pages 5072-5080, September.
    5. Stewart Russell & Nils Markusson & Vivian Scott, 2012. "What will CCS demonstrations demonstrate?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 651-668, August.
    6. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    7. Cavalcanti, Eduardo J.C. & Lima, Matheus S.R. & de Souza, Gabriel F., 2020. "Comparison of carbon capture system and concentrated solar power in natural gas combined cycle: Exergetic and exergoenvironmental analyses," Renewable Energy, Elsevier, vol. 156(C), pages 1336-1347.
    8. Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
    9. Maitri Verma & Alok Kumar Verma & A. K. Misra, 2021. "Mathematical modeling and optimal control of carbon dioxide emissions from energy sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13919-13944, September.
    10. Widuramina Amarasinghe & Ingebret Fjelde & Nils Giske & Ying Guo, 2021. "CO 2 Convective Dissolution in Oil-Saturated Unconsolidated Porous Media at Reservoir Conditions," Energies, MDPI, vol. 14(1), pages 1-13, January.
    11. Saman Hasan & Abubakar Jibrin Abbas & Ghasem Ghavami Nasr, 2020. "Improving the Carbon Capture Efficiency for Gas Power Plants through Amine-Based Absorbents," Sustainability, MDPI, vol. 13(1), pages 1-27, December.
    12. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    13. Marshall, Jonathan Paul, 2016. "Disordering fantasies of coal and technology: Carbon capture and storage in Australia," Energy Policy, Elsevier, vol. 99(C), pages 288-298.
    14. Yang Teng & Lijiao Li & Gang Xu & Kai Zhang & Kaixi Li, 2016. "Promoting Effect of Inorganic Alkali on Carbon Dioxide Adsorption in Amine-Modified MCM-41," Energies, MDPI, vol. 9(9), pages 1-11, August.
    15. Haftendorn, C. & Kemfert, C. & Holz, F., 2012. "What about coal? Interactions between climate policies and the global steam coal market until 2030," Energy Policy, Elsevier, vol. 48(C), pages 274-283.
    16. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Simon P. Philbin, 2020. "Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization," Clean Technol., MDPI, vol. 2(4), pages 1-21, December.
    18. Odi Fawwaz Alrebei & Philip Bowen & Agustin Valera Medina, 2020. "Parametric Study of Various Thermodynamic Cycles for the Use of Unconventional Blends," Energies, MDPI, vol. 13(18), pages 1-16, September.
    19. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    20. Liu, Hengwei & Gallagher, Kelly Sims, 2010. "Catalyzing strategic transformation to a low-carbon economy: A CCS roadmap for China," Energy Policy, Elsevier, vol. 38(1), pages 59-74, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:11:y:2021:i:2:p:342-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.