IDEAS home Printed from https://ideas.repec.org/a/vrs/ecobur/v9y2023i2p27-40n3.html
   My bibliography  Save this article

Big data in monetary policy analysis—a critical assessment

Author

Listed:
  • Bogner Alexandra

    (Universität Regensburg, Chair for International and Monetary Economics, 93040 Regensburg, Germany)

  • Jerger Jürgen

    (Universität Regensburg, Chair for International and Monetary Economics, 93040 Regensburg, Germany)

Abstract

Over the last years the use of big data became increasingly relevant also for macroeconomic topics and specifically the conduct and analysis of monetary policy. The aim of this paper is to provide a survey of these applications and the relevant methods. The rationale for doing so is twofold. First, there is no straightforward definition of “big data”. Since macroeconomics and monetary policy analysis has a long tradition in quite sophisticated and data-intensive empirical applications the nature of the innovation big data is indeed bringing to the field is reflected upon. Second, concerning statistical / empirical methods the analysis of big data necessitates the use of different tools relative to traditional empirical macroeconomics which are in some cases a complement to more traditional methods. Hence big data in monetary policy is not just the application of well-established methods to larger data sets.

Suggested Citation

  • Bogner Alexandra & Jerger Jürgen, 2023. "Big data in monetary policy analysis—a critical assessment," Economics and Business Review, Sciendo, vol. 9(2), pages 27-40, April.
  • Handle: RePEc:vrs:ecobur:v:9:y:2023:i:2:p:27-40:n:3
    DOI: 10.18559/ebr.2023.2.733
    as

    Download full text from publisher

    File URL: https://doi.org/10.18559/ebr.2023.2.733
    Download Restriction: no

    File URL: https://libkey.io/10.18559/ebr.2023.2.733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    2. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    3. Alberto Cavallo, 2018. "Scraped Data and Sticky Prices," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 105-119, March.
    4. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    5. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    6. Cavallo, Alberto, 2013. "Online and official price indexes: Measuring Argentina's inflation," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 152-165.
    7. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    8. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    9. Justyna Klejdysz & Robin L. Lumsdaine, 2023. "Shifts in ECB Communication: A Textual Analysis of the Press Conference," International Journal of Central Banking, International Journal of Central Banking, vol. 19(2), pages 473-542, June.
    10. Valentina Aprigliano & Guerino Ardizzi & Libero Monteforte, 2019. "Using Payment System Data to Forecast Economic Activity," International Journal of Central Banking, International Journal of Central Banking, vol. 15(4), pages 55-80, October.
    11. Cornelia Hammer & Ms. Diane C Kostroch & Mr. Gabriel Quiros-Romero, 2017. "Big Data: Potential, Challenges and Statistical Implications," IMF Staff Discussion Notes 2017/006, International Monetary Fund.
    12. Adam Hale Shapiro & Daniel J Wilson, 2022. "Taking the Fed at its Word: A New Approach to Estimating Central Bank Objectives using Text Analysis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(5), pages 2768-2805.
    13. Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
    14. Cornelia Hammer & Diane C Kostroch & Gabriel Quiros-Romero, 2017. "Big Data; Potential, Challenges and Statistical Implications," IMF Staff Discussion Notes 17/06, International Monetary Fund.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW Kiel).
    2. Martin Baumgaertner & Johannes Zahner, 2021. "Whatever it takes to understand a central banker - Embedding their words using neural networks," MAGKS Papers on Economics 202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    3. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    4. Istrefi, Klodiana & Odendahl, Florens & Sestieri, Giulia, 2023. "Fed communication on financial stability concerns and monetary policy decisions: Revelations from speeches," Journal of Banking & Finance, Elsevier, vol. 151(C).
    5. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    6. Picault, Matthieu & Renault, Thomas, 2017. "Words are not all created equal: A new measure of ECB communication," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 136-156.
    7. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    8. Hubert, Paul & Labondance, Fabien, 2021. "The signaling effects of central bank tone," European Economic Review, Elsevier, vol. 133(C).
    9. Carlos Madeira & João Madeira & Paulo Santos Monteiro, 2023. "The origins of monetary policy disagreement: the role of supply and demand shocks," BIS Working Papers 1118, Bank for International Settlements.
    10. Alexey S. Evseev & Rodion R. Latypov & Egor A. Postolit & Elena S. Sinelnikova-Muryleva, 2022. "Техданные О Ценах Онлайн-Ритейлеров Обладают Огромной Ценностью С Точки Зрения Экономической Науки: Их Использование Позволяет Уточнять Прогнозы Инфляции И Предвосхищать Будущие Тенденции В Моменте, К," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 11, pages 36-45, November.
    11. Kwok Ping Tsang & Zichao Yang, 2023. "Agree to Disagree: Measuring Hidden Dissents in FOMC Meetings," Papers 2308.10131, arXiv.org, revised Mar 2024.
    12. Ilias Filippou & James Mitchell & My T. Nguyen, 2023. "The FOMC versus the Staff: Do Policymakers Add Value in Their Tales?," Working Papers 23-20, Federal Reserve Bank of Cleveland.
    13. Alexey S. Evseev & Rodion R. Latypov & Egor A. Postolit & Elena S. Sinelnikova-Muryleva, 2022. "Technical and Methodological Challenges of Collecting Price Data from Online Retailers [Технические И Методологические Проблемы Сбора Данных О Ценах Онлайн-Ритейлеров]," Russian Economic Development, Gaidar Institute for Economic Policy, issue 11, pages 36-45, November.
    14. Hillen, Judith, 2018. "Web Scraping For Food Price Research," 58th Annual Conference, Kiel, Germany, September 12-14, 2018 275840, German Association of Agricultural Economists (GEWISOLA).
    15. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
    16. Diego Aparicio & Alberto Cavallo, 2021. "Targeted Price Controls on Supermarket Products," The Review of Economics and Statistics, MIT Press, vol. 103(1), pages 60-71, March.
    17. Hüpper, Florian & Kempa, Bernd, 2023. "Inflation targeting and inflation communication of the Federal Reserve: Words and deeds," Journal of Macroeconomics, Elsevier, vol. 75(C).
    18. Alberto Cavallo, 2017. "Are Online and Offline Prices Similar? Evidence from Large Multi-channel Retailers," American Economic Review, American Economic Association, vol. 107(1), pages 283-303, January.
    19. Haavio, Markus & Heikkinen, Joni & Jalasjoki, Pirkka & Kilponen, Juha & Paloviita, Maritta & Vänni, Ilona, 2024. "Reading between the lines: Uncovering asymmetry in the central bank loss function," Bank of Finland Research Discussion Papers 6/2024, Bank of Finland.
    20. Keiichi Goshima & Hiroshi Ishijima & Mototsugu Shintani & Hiroki Yamamoto, 2019. "Forecasting Japanese inflation with a news-based leading indicator of economic activities," CARF F-Series CARF-F-458, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    Keywords

    big data; monetary policy; text analysis; nowcasting;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ecobur:v:9:y:2023:i:2:p:27-40:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.