IDEAS home Printed from https://ideas.repec.org/a/ukb/journl/y2019i248p11-20.html
   My bibliography  Save this article

Short-Run Forecasting of Core Inflation in Ukraine: a Combined ARMA Approach

Author

Listed:
  • Dmytro Krukovets

    (National Bank of Ukraine)

  • Olesia Verchenko

    (Kyiv School of Economics)

Abstract

The ability to produce high-quality inflation forecasts is crucial for modern central banks. Inflation forecasts are needed for understanding current and forthcoming inflation trends, evaluating the effectiveness of previous policy actions, making new policy decisions, and building the credibility of a central bank in the eyes of the public. This motivates a constant search for new approaches to producing inflation forecasts. This paper analyses the empirical performance of several alternative inflation forecasting models based on structural vs. data-driven approaches, as well as aggregated vs. disaggregated data. It demonstrates that a combined ARMA model with data-based dummies that uses the disaggregated core inflation data for Ukraine allows to considerably improve the quality of an inflation forecast as compared to the core structural model based on aggregated data..

Suggested Citation

  • Dmytro Krukovets & Olesia Verchenko, 2019. "Short-Run Forecasting of Core Inflation in Ukraine: a Combined ARMA Approach," Visnyk of the National Bank of Ukraine, National Bank of Ukraine, issue 248, pages 11-20.
  • Handle: RePEc:ukb:journl:y:2019:i:248:p:11-20
    DOI: 10.26531/vnbu2019.248.02
    as

    Download full text from publisher

    File URL: https://journal.bank.gov.ua/en/article/2019/248/02
    Download Restriction: no

    File URL: http://journal.bank.gov.ua/uploads/articles/248_2_Krukovets_Verchenko.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26531/vnbu2019.248.02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002. "Inflation, forecast intervals and long memory regression models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Nicoletta Batini & Edward Nelson, 2001. "The Lag from Monetary Policy Actions to Inflation: Friedman Revisited," International Finance, Wiley Blackwell, vol. 4(3), pages 381-400.
    4. Colin Bermingham & Antonello D’Agostino, 2014. "Understanding and forecasting aggregate and disaggregate price dynamics," Empirical Economics, Springer, vol. 46(2), pages 765-788, March.
    5. Dr. Marco Huwiler & Daniel Kaufmann, 2013. "Combining disaggregate forecasts for inflation: The SNB's ARIMA model," Economic Studies 2013-07, Swiss National Bank.
    6. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    7. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    8. Oleksandr Faryna, 2016. "Nonlinear Exchange Rate Pass-Through to Domestic Prices in Ukraine," Visnyk of the National Bank of Ukraine, National Bank of Ukraine, issue 236, pages 30-42, June.
    9. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    10. Roma, Moreno & Skudelny, Frauke & Benalal, Nicholai & Diaz del Hoyo, Juan Luis & Landau, Bettina, 2004. "To aggregate or not to aggregate? Euro area inflation forecasting," Working Paper Series 374, European Central Bank.
    11. Anton Grui & Volodymyr Lepushynskyi, 2016. "Applying Foreign Exchange Interventions as an Additional Instrument Under Inflation Targeting: The Case of Ukraine," Visnyk of the National Bank of Ukraine, National Bank of Ukraine, issue 238, pages 39-56.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Ruey Yau & C. James Hueng, 2019. "Nowcasting GDP Growth for Small Open Economies with a Mixed-Frequency Structural Model," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 177-198, June.
    14. Anton Grui & Artem Vdovychenko, 2019. "Quarterly Projection Model for Ukraine," Working Papers 03/2019, National Bank of Ukraine.
    15. David Gruen & John Romalis & Naveen Chandra, 1999. "The Lags of Monetary Policy," The Economic Record, The Economic Society of Australia, vol. 75(3), pages 280-294, September.
    16. Damian Stelmasiak & Grzegorz Szafrański, 2016. "Forecasting the Polish Inflation Using Bayesian VAR Models with Seasonality," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 21-42, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmytro Krukovets, 2024. "Exploring an LSTM-SARIMA routine for core inflation forecasting," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 2(2(76)), pages 6-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    2. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    3. Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023. "Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany," Discussion Papers 34/2023, Deutsche Bundesbank.
    4. Andrejs Bessonovs & Olegs Krasnopjorovs, 2021. "Short-term inflation projections model and its assessment in Latvia," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 21(2), pages 184-204.
    5. Cobb, Marcus P A, 2017. "Forecasting Economic Aggregates Using Dynamic Component Grouping," MPRA Paper 81585, University Library of Munich, Germany.
    6. Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
    7. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    9. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    10. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    11. Liu, Li & Ma, Feng & Wang, Yudong, 2015. "Forecasting excess stock returns with crude oil market data," Energy Economics, Elsevier, vol. 48(C), pages 316-324.
    12. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    13. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    14. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    15. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
    16. Viacheslav Kramkov, 2023. "Does CPI disaggregation improve inflation forecast accuracy?," Bank of Russia Working Paper Series wps112, Bank of Russia.
    17. Wei, Yu & Cao, Yang, 2017. "Forecasting house prices using dynamic model averaging approach: Evidence from China," Economic Modelling, Elsevier, vol. 61(C), pages 147-155.
    18. Angela Capolongo & Claudia Pacella, 2021. "Forecasting inflation in the euro area: countries matter!," Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
    19. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    20. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.

    More about this item

    Keywords

    short-run forecasting; core inflation; ARMA; disaggregation;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ukb:journl:y:2019:i:248:p:11-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit (email available below). General contact details of provider: https://edirc.repec.org/data/nbugvua.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.