IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v96y2014i4p745-755.html

Forecasting Aggregate Productivity Using Information from Firm-Level Data

Author

Listed:
  • Eric J. Bartelsman

    (VU University Amsterdam, Tinbergen Institute, and IZA)

  • Zoltan Wolf

    (U.S. Bureau of Census)

Abstract

In this paper, we explore whether information from firm-level data can improve forecasts of aggregate productivity growth. We generate firm-level productivity measures and aggregate them into time-series components that capture within-firm productivity and the productivity contribution of reallocation. We show that these components improve aggregate total factor productivity forecasts in a simple univariate setting, even when firm-level data are available with a time lag. Lagged firm-level information also improves aggregate productivity forecasts when we combine results from a variety of different multivariate forecasting models using Bayesian model averaging techniques. © 2014 The President and Fellows of Harvard College and the Massachusetts Institute of Technology

Suggested Citation

  • Eric J. Bartelsman & Zoltan Wolf, 2014. "Forecasting Aggregate Productivity Using Information from Firm-Level Data," The Review of Economics and Statistics, MIT Press, vol. 96(4), pages 745-755, October.
  • Handle: RePEc:tpr:restat:v:96:y:2014:i:4:p:745-755
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00395
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    2. Jensen Christian, 2016. "On the macroeconomic effects of heterogeneous productivity shocks," The B.E. Journal of Macroeconomics, De Gruyter, vol. 16(1), pages 1-23, January.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Gorji, Narges Mirzaie & Fami, Hossein Shabanali & Iravani, Hooshang, . "Investigating Factors that Affecting Citrus Waste Production in Mazandaran Province, Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 7(01).
    5. Pantea, Smaranda & Sabadash, Anna & Biagi, Federico, 2017. "Are ICT displacing workers in the short run? Evidence from seven European countries," Information Economics and Policy, Elsevier, vol. 39(C), pages 36-44.
    6. Fornaro, Paolo & Luomaranta, Henri, 2017. "Small and Medium Firms, Aggregate Productivity and the Role of Dependencies," ETLA Working Papers 47, The Research Institute of the Finnish Economy.
    7. Christina Poetzsch, 2017. "Technology transfer on a two-way street: R&D spillovers through intermediate input usage and supply," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(4), pages 735-751, November.
    8. Ayyagari, Meghana & Demirguc-Kunt, Asli & Maksimovic, Vojislav, 2011. "Do Phoenix miracles exist ? firm-level evidence from financial crises," Policy Research Working Paper Series 5799, The World Bank.
    9. Jinchao Wang & Changfu Luo, 2022. "Social Mobility and Firms’ Total Factor Productivity: Evidence from China," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    10. Fabling Richard, 2024. "Still medalling: Productivity gets a bronze (data source)," Motu Working Papers 24_06, Motu Economic and Public Policy Research.
    11. Zhong, Sheng, 2016. "The dynamics of vehicle energy efficiency: Evidence from the Massachusetts Vehicle Census," MERIT Working Papers 2016-014, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:96:y:2014:i:4:p:745-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The MIT Press (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.