IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v42y2015i4p362-376.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Optimized selection of vessel air emission controls--moving beyond cost-efficiency

Author

Listed:
  • Océane Balland
  • Cecilia Girard
  • Stein Ove Erikstad
  • Kjetil Fagerholt

Abstract

Shipping currently has an unexploited potential for improved energy efficiency and reduced emissions to air. Many existing air emission controls have been proved to be cost-efficient but are still not commonly installed on board vessels. This paper discusses the so-called 'energy paradox' in maritime transportation, presenting barriers to overcome and criteria to consider when selecting cost-efficient air emission controls. Current approaches typically select available controls based on their cost-effectiveness. While this is an important aid in the decision-making process, and, in relative terms, easy to quantify, it is not a sufficient criterion to capture the true preferences of the decision-maker. We present in this paper a multi-criteria optimization model for the selection of air emission controls. This decision framework can also incorporate subjective and qualitative factors, and is applied to the shipping company Grieg Shipping. A survey among internal Grieg Shipping stakeholders identifies the important criteria to consider, their relative importance, and the scoring of the controls. This empirical data is used as parameters in the model and the model is then applied on a vessel of the Grieg Shipping fleet. The results show that nonfinancial factors play an important role in the selection of air emission controls in shipping.

Suggested Citation

  • Océane Balland & Cecilia Girard & Stein Ove Erikstad & Kjetil Fagerholt, 2015. "Optimized selection of vessel air emission controls--moving beyond cost-efficiency," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(4), pages 362-376, May.
  • Handle: RePEc:taf:marpmg:v:42:y:2015:i:4:p:362-376
    DOI: 10.1080/03088839.2013.872311
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2013.872311
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2013.872311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
    2. Altman, Anna & Amann, Markus & Klaassen, Ger & Ruszczynski, Andrzej & Schopp, Wolfgang, 1996. "Cost-effective sulphur emission reduction under uncertainty," European Journal of Operational Research, Elsevier, vol. 90(3), pages 395-412, May.
    3. Evangelos-Pavlos Rousos & Byung S. Lee, 2012. "Multicriteria analysis in shipping investment evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(4), pages 423-442, July.
    4. Weber, Lukas, 1997. "Some reflections on barriers to the efficient use of energy," Energy Policy, Elsevier, vol. 25(10), pages 833-835, August.
    5. Océane Balland & Stein Ove Erikstad & Kjetil Fagerholt, 2012. "Optimized selection of air emission controls for vessels," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(4), pages 387-400, July.
    6. Stephen J. Decanio & William E. Watkins, 1998. "Investment In Energy Efficiency: Do The Characteristics Of Firms Matter?," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 95-107, February.
    7. I. N. Lagoudis & C. S. Lalwani & M.M. Naim, 2006. "Ranking of factors contributing to higher performance in the ocean transportation industry: a multi-attribute utility theory approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(4), pages 345-369, September.
    8. Peter N. Hoffmann & Magnus S. Eide & Øyvind Endresen, 2012. "Effect of proposed CO 2 emission reduction scenarios on capital expenditure," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(4), pages 443-460, July.
    9. DeCanio, Stephen J, 1998. "The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments," Energy Policy, Elsevier, vol. 26(5), pages 441-454, April.
    10. Blumstein, Carl & Krieg, Betsy & Schipper, Lee & York, Carl, 1980. "Overcoming social and institutional barriers to energy conservation," Energy, Elsevier, vol. 5(4), pages 355-371.
    11. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    12. DeCanio, Stephen J., 1993. "Barriers within firms to energy-efficient investments," Energy Policy, Elsevier, vol. 21(9), pages 906-914, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    2. Bai, Xiwen & Hou, Yao & Yang, Dong, 2021. "Choose clean energy or green technology? Empirical evidence from global ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    3. Qinghe Sun & Li Chen & Mabel C. Chou & Qiang Meng, 2023. "Mitigating the financial risk behind emission cap compliance: A case in maritime transportation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 283-300, January.
    4. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen & Gillen, David, 2017. "Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 99-114.
    5. Gong, Xu & Li, Zhi-Chun, 2022. "Determination of subsidy and emission control coverage under competition and cooperation of China-Europe Railway Express and liner shipping," Transport Policy, Elsevier, vol. 125(C), pages 323-335.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    2. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2021. "Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective," Energy Policy, Elsevier, vol. 159(C).
    3. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    4. Fredrik Backman, 2017. "Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program," Energies, MDPI, vol. 10(1), pages 1-13, January.
    5. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    6. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    7. Rohdin, P. & Thollander, P., 2006. "Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden," Energy, Elsevier, vol. 31(12), pages 1836-1844.
    8. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2012. "Anatomy of a paradox: Management practices, organizational structure and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 208-223.
    9. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    10. Löschel, Andreas & Lutz, Benjamin Johannes & Massier, Philipp, 2017. "Credit constraints, energy management practices, and investments in energy saving technologies: German manufacturing in close-up," ZEW Discussion Papers 17-072, ZEW - Leibniz Centre for European Economic Research.
    11. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.
    12. Bremer, Leon & den Nijs, Sacha & de Groot, Henri L.F., 2024. "The energy efficiency gap and barriers to investments: Evidence from a firm survey in The Netherlands," Energy Economics, Elsevier, vol. 133(C).
    13. Boyd, Gale A. & Curtis, E. Mark, 2014. "Evidence of an “Energy-Management Gap” in U.S. manufacturing: Spillovers from firm management practices to energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 68(3), pages 463-479.
    14. Wang, Liyang & Morabito, Molly & Payne, Christopher T. & Robinson, Gerald, 2020. "Identifying institutional barriers and policy implications for sustainable energy technology adoption among large organizations in California," Energy Policy, Elsevier, vol. 146(C).
    15. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    16. DeCanio, Stephen J. & Watkins, William E., 1998. "Information processing and organizational structure," Journal of Economic Behavior & Organization, Elsevier, vol. 36(3), pages 275-294, August.
    17. Brucal, Arlan & Javorcik, Beata & Love, Inessa, 2019. "Good for the environment, good for business: Foreign acquisitions and energy intensity," Journal of International Economics, Elsevier, vol. 121(C).
    18. Runst, Petrik & Bettendorf, Axel, 2017. "Energieeffizienz in Klein- und Kleinstunternehmen des Handwerks," Göttinger Beiträge zur Handwerksforschung 16, Volkswirtschaftliches Institut für Mittelstand und Handwerk an der Universität Göttingen (ifh).
    19. Gale Boyd & Mark Curtis, 2013. "Evidence Of An Ï¿½Energy-Management Gap� In U.S. Manufacturing: Spillovers From Firm Management Practices To Energy Efficiency," Working Papers 13-25, Center for Economic Studies, U.S. Census Bureau.
    20. Liliia Bilous, 2021. "Minimization of energy efficiency barriers in the context of optimization of management decisions in the process of sustainable development," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 3(4(59)), pages 22-27.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:42:y:2015:i:4:p:362-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.