IDEAS home Printed from https://ideas.repec.org/a/taf/jecmet/v13y2006i2p179-218.html
   My bibliography  Save this article

Revisiting the omitted variables argument: Substantive vs. statistical adequacy

Author

Listed:
  • Aris Spanos

Abstract

The problem of omitted variables is commonly viewed as a statistical misspecification issue which renders the inference concerning the influence of X t on yt unreliable, due to the exclusion of certain relevant factors W t . That is, omitting certain potentially important factors W t may confound the influence of X t on yt . The textbook omitted variables argument attempts to assess the seriousness of this unreliability using the sensitivity of the estimator [image omitted] to the inclusion/exclusion of W t , by tracing that effect to the potential bias/inconsistency of [image omitted] . It is argued that the confounding problem is one of substantive inadequacy in so far as the potential error concerns subject-matter, not statistical, information. Moreover, the textbook argument in terms of the sensitivity of point estimates provides a poor basis for addressing the confounding problem. The paper reframes the omitted variables question into a hypothesis testing problem, supplemented with a post-data evaluation of inference based on severe testing. It is shown that this testing perspective can deal effectively with assessing the problem of confounding raised by the omitted variables argument. The assessment of the confouding effect using hypothesis testing is related to the conditional independence and faithfulness assumptions of graphical causal modeling.

Suggested Citation

  • Aris Spanos, 2006. "Revisiting the omitted variables argument: Substantive vs. statistical adequacy," Journal of Economic Methodology, Taylor & Francis Journals, vol. 13(2), pages 179-218.
  • Handle: RePEc:taf:jecmet:v:13:y:2006:i:2:p:179-218
    DOI: 10.1080/13501780600730687
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13501780600730687
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spanos, Aris, 1989. "On Rereading Haavelmo: A Retrospective View of Econometric Modeling," Econometric Theory, Cambridge University Press, vol. 5(03), pages 405-429, December.
    2. Spanos,Aris, 1986. "Statistical Foundations of Econometric Modelling," Cambridge Books, Cambridge University Press, number 9780521269124, May.
    3. Leamer, Edward E & Leonard, Herman B, 1983. "Reporting the Fragility of Regression Estimates," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 306-317, May.
    4. Spanos, Aris, 1995. "On theory testing in econometrics : Modeling with nonexperimental data," Journal of Econometrics, Elsevier, vol. 67(1), pages 189-226, May.
    5. Spanos, Aris, 1990. "The simultaneous-equations model revisited : Statistical adequacy and identification," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 87-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anya McGuirk & Aris Spanos, 2009. "Revisiting Error-Autocorrelation Correction: Common Factor Restrictions and Granger Non-Causality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 273-294, April.
    2. Francisco Estrada & Víctor Guerrero & Carlos Gay-García & Benjamín Martínez-López, 2013. "A cautionary note on automated statistical downscaling methods for climate change," Climatic Change, Springer, vol. 120(1), pages 263-276, September.
    3. Chatelain, Jean-Bernard & Ralf, Kirsten, 2014. "Spurious regressions and near-multicollinearity, with an application to aid, policies and growth," EconStor Open Access Articles, ZBW - German National Library of Economics, pages 85-96.
    4. Spanos, Aris, 2008. "The 'Pre-Eminence of Theory' versus the 'General-to-Specific' Cointegrated VAR Perspectives in Macro-Econometric Modeling," Economics Discussion Papers 2008-25, Kiel Institute for the World Economy (IfW).
    5. Spanos, Aris, 2010. "Statistical adequacy and the trustworthiness of empirical evidence: Statistical vs. substantive information," Economic Modelling, Elsevier, vol. 27(6), pages 1436-1452, November.
    6. Spanos, Aris, 2010. "Akaike-type criteria and the reliability of inference: Model selection versus statistical model specification," Journal of Econometrics, Elsevier, vol. 158(2), pages 204-220, October.
    7. Spanos, Aris, 2009. "The Pre-Eminence of Theory versus the European CVAR Perspective in Macroeconometric Modeling," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 3, pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jecmet:v:13:y:2006:i:2:p:179-218. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RJEC20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.