IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v71y2009i2p273-294.html
   My bibliography  Save this article

Revisiting Error-Autocorrelation Correction: Common Factor Restrictions and Granger Non-Causality

Author

Listed:
  • Anya McGuirk
  • Aris Spanos

Abstract

The paper questions the appropriateness of the practice known as 'error-autocorrelation correcting' in linear regression, by showing that adopting an AR(1) error formulation is equivalent to assuming that the regressand does not Granger cause any of the regressors. This result is used to construct a new test for the common factor restrictions, as well as investigate - using Monte Carlo simulations - other potential sources of unreliability of inference resulting from this practice. The main conclusion is that when the Granger cause restriction is false, the ordinary least square and generalized least square estimators are biased and inconsistent, and using autocorrelation-consistent standard errors does not improve the reliability of inference. Copyright (c) Blackwell Publishing Ltd and the Department of Economics, University of Oxford, 2009.

Suggested Citation

  • Anya McGuirk & Aris Spanos, 2009. "Revisiting Error-Autocorrelation Correction: Common Factor Restrictions and Granger Non-Causality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 273-294, April.
  • Handle: RePEc:bla:obuest:v:71:y:2009:i:2:p:273-294
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1468-0084.2008.00538.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-563, September.
    2. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    3. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    4. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    5. Aris Spanos & Anya McGuirk, 2001. "The Model Specification Problem from a Probabilistic Reduction Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(5), pages 1168-1176.
    6. Aris Spanos, 2006. "Revisiting the omitted variables argument: Substantive vs. statistical adequacy," Journal of Economic Methodology, Taylor & Francis Journals, vol. 13(2), pages 179-218.
    7. Spanos, Aris & McGuirk, Anya, 2002. "The problem of near-multicollinearity revisited: erratic vs systematic volatility," Journal of Econometrics, Elsevier, vol. 108(2), pages 365-393, June.
    8. Hoover, Kevin D, 1988. "On the Pitfalls of Untested Common-Factor Restrictions: The Case of the Inverted Fisher Hypothesis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(2), pages 125-138, May.
    9. Sargan, J D, 1980. "Some Tests of Dynamic Specification for a Single Equation," Econometrica, Econometric Society, vol. 48(4), pages 879-897, May.
    10. Spanos, Aris, 1995. "On theory testing in econometrics : Modeling with nonexperimental data," Journal of Econometrics, Elsevier, vol. 67(1), pages 189-226, May.
    11. Spanos,Aris, 1986. "Statistical Foundations of Econometric Modelling," Cambridge Books, Cambridge University Press, number 9780521269124, May.
    12. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spanos, Aris, 2010. "Statistical adequacy and the trustworthiness of empirical evidence: Statistical vs. substantive information," Economic Modelling, Elsevier, vol. 27(6), pages 1436-1452, November.
    2. Piper, Alan T., 2012. "A Happiness Test of Human Capital Theory," MPRA Paper 43496, University Library of Munich, Germany.
    3. Burhop, Carsten & L├╝bbers, Thorsten, 2010. "Incentives and innovation? R&D management in Germany's chemical and electrical engineering industries around 1900," Explorations in Economic History, Elsevier, vol. 47(1), pages 100-111, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:71:y:2009:i:2:p:273-294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sfeixuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.