IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v120y2013i1p263-276.html
   My bibliography  Save this article

A cautionary note on automated statistical downscaling methods for climate change

Author

Listed:
  • Francisco Estrada
  • Víctor Guerrero
  • Carlos Gay-García
  • Benjamín Martínez-López

Abstract

The urge for higher resolution climate change scenarios has been widely recognized, particularly for conducting impact assessment studies. Statistical downscaling methods have shown to be very convenient for this task, mainly because of their lower computational requirements in comparison with nested limited-area regional models or very high resolution Atmosphere–ocean General Circulation Models. Nevertheless, although some of the limitations of statistical downscaling methods are widely known and have been discussed in the literature, in this paper it is argued that the current approach for statistical downscaling does not guard against misspecified statistical models and that the occurrence of spurious results is likely if the assumptions of the underlying probabilistic model are not satisfied. In this case, the physics included in climate change scenarios obtained by general circulation models, could be replaced by spatial patterns and magnitudes produced by statistically inadequate models. Illustrative examples are provided for monthly temperature for a region encompassing Mexico and part of the United States. It is found that the assumptions of the probabilistic models do not hold for about 70 % of the gridpoints, parameter instability and temporal dependence being the most common problems. As our examples reveal, automated statistical downscaling “black-box” models are to be considered as highly prone to produce misleading results. It is shown that the Probabilistic Reduction approach can be incorporated as a complete and internally consistent framework for securing the statistical adequacy of the downscaling models and for guiding the respecification process, in a way that prevents the lack of empirical validity that affects current methods. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Francisco Estrada & Víctor Guerrero & Carlos Gay-García & Benjamín Martínez-López, 2013. "A cautionary note on automated statistical downscaling methods for climate change," Climatic Change, Springer, vol. 120(1), pages 263-276, September.
  • Handle: RePEc:spr:climat:v:120:y:2013:i:1:p:263-276
    DOI: 10.1007/s10584-013-0791-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0791-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0791-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spanos, Aris, 2010. "Statistical adequacy and the trustworthiness of empirical evidence: Statistical vs. substantive information," Economic Modelling, Elsevier, vol. 27(6), pages 1436-1452, November.
    2. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    3. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    4. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    5. Elena Andreou & Aris Spanos, 2003. "Statistical Adequacy and the Testing of Trend Versus Difference Stationarity," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 217-237, January.
    6. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    7. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    8. Spanos,Aris, 1986. "Statistical Foundations of Econometric Modelling," Cambridge Books, Cambridge University Press, number 9780521269124, July.
    9. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    10. Aris Spanos, 2006. "Revisiting the omitted variables argument: Substantive vs. statistical adequacy," Journal of Economic Methodology, Taylor & Francis Journals, vol. 13(2), pages 179-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Casanueva & S. Herrera & J. Fernández & J.M. Gutiérrez, 2016. "Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative," Climatic Change, Springer, vol. 137(3), pages 411-426, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    2. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5, December.
    3. Mizon, Grayham E., 1995. "A simple message for autocorrelation correctors: Don't," Journal of Econometrics, Elsevier, vol. 69(1), pages 267-288, September.
    4. Ericsson, Neil R., 1992. "Parameter constancy, mean square forecast errors, and measuring forecast performance: An exposition, extensions, and illustration," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 465-495, August.
    5. Hendry, David F. & Ericsson, Neil R., 1991. "Modeling the demand for narrow money in the United Kingdom and the United States," European Economic Review, Elsevier, vol. 35(4), pages 833-881, May.
    6. Gerdesmeier, Dieter, 1996. "Die Rolle des Vermögens in der Geldnachfrage," Discussion Paper Series 1: Economic Studies 1996,05, Deutsche Bundesbank.
    7. Aris Spanos, 2018. "Mis†Specification Testing In Retrospect," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 541-577, April.
    8. Maria Heracleous & Andreas Koutris & Aris Spanos, 2006. "Testing for Structural Breaks and other forms of Non-stationarity: a Misspecification Perspective," Computing in Economics and Finance 2006 493, Society for Computational Economics.
    9. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    10. de Meulemeester, Jean-Luc & Rochat, Denis, 1995. "A causality analysis of the link between higher education and economic development," Economics of Education Review, Elsevier, vol. 14(4), pages 351-361, December.
    11. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    12. Shamim Ahmed & M. Golam Mortaza, 2010. "Inflation and Economic Growth in Bangladesh: 1981-2005," Working Papers id:3033, eSocialSciences.
    13. Bardsen, Gunnar & Eitrheim, Oyvind & Jansen, Eilev S. & Nymoen, Ragnar, 2005. "The Econometrics of Macroeconomic Modelling," OUP Catalogue, Oxford University Press, number 9780199246502, Decembrie.
    14. Aris Spanos, 2016. "Transforming structural econometrics: substantive vs. statistical premises of inference," Review of Political Economy, Taylor & Francis Journals, vol. 28(3), pages 426-437, July.
    15. Takala, Kari & Virén, Matti, 1994. "Chaos and nonlinear dynamics: evidence from Finland," Bank of Finland Research Discussion Papers 11/1994, Bank of Finland.
    16. Neil Karunaratne, 1997. "High-Tech Innovation, Growth and Trade Dynamics in Australia," Open Economies Review, Springer, vol. 8(2), pages 151-170, April.
    17. Steel, Mark F. J. & Richard, Jean-Francois, 1991. "Bayesian multivariate exogeneity analysis : An application to a UK money demand equation," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 239-274.
    18. Philip Arestis & Ana Rosa Gonzalez‐Martinez, 2019. "Economic precariousness: A new channel in the housing market cycle," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 1030-1043, April.
    19. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    20. Spanos, Aris, 2010. "Akaike-type criteria and the reliability of inference: Model selection versus statistical model specification," Journal of Econometrics, Elsevier, vol. 158(2), pages 204-220, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:120:y:2013:i:1:p:263-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.