IDEAS home Printed from https://ideas.repec.org/a/taf/applec/45y2013i12p1541-1550.html
   My bibliography  Save this article

Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies

Author

Listed:
  • R. Rosillo
  • D. de la Fuente
  • J. A. L. Brugos

Abstract

The aim of this research is to examine the result of the application of the indicators Relative Strength Index (RSI), Moving Average Convergence Divergence (MACD), Momentum and Stochastic in different companies of the Spanish continuous market. By using these indicators, it is intended to give purchase and sale recommendations to small investors. The generation of great capital gains depends on the type of the stock exchange company and the indicator which is being used. In addition, this research solves the problems in case of ambiguity, in the indicators, for the traders.

Suggested Citation

  • R. Rosillo & D. de la Fuente & J. A. L. Brugos, 2013. "Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies," Applied Economics, Taylor & Francis Journals, vol. 45(12), pages 1541-1550, April.
  • Handle: RePEc:taf:applec:45:y:2013:i:12:p:1541-1550
    DOI: 10.1080/00036846.2011.631894
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2011.631894
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    2. Mills, Terence C, 1997. "Technical Analysis and the London Stock Exchange: Testing Trading Rules Using the FT30," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 319-331, October.
    3. Treynor, Jack L & Ferguson, Robert, 1985. " In Defense of Technical Analysis," Journal of Finance, American Finance Association, vol. 40(3), pages 757-773, July.
    4. repec:bla:jfinan:v:58:y:2003:i:5:p:1791-1819 is not listed on IDEAS
    5. Neely, C. J. & Weller, P. A., 2003. "Intraday technical trading in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 22(2), pages 223-237, April.
    6. Osler, Carol L., 2005. "Stop-loss orders and price cascades in currency markets," Journal of International Money and Finance, Elsevier, vol. 24(2), pages 219-241, March.
    7. Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
    8. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    9. Allen, Helen & Taylor, Mark P, 1990. "Charts, Noise and Fundamentals in the London Foreign Exchange Market," Economic Journal, Royal Economic Society, vol. 100(400), pages 49-59, Supplemen.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. Terence Tai-Leung Chong & Wing-Kam Ng, 2008. "Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30," Applied Economics Letters, Taylor & Francis Journals, vol. 15(14), pages 1111-1114.
    12. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    13. Carol L. Osler, 2003. "Currency Orders and Exchange Rate Dynamics: An Explanation for the Predictive Success of Technical Analysis," Journal of Finance, American Finance Association, vol. 58(5), pages 1791-1820, October.
    14. Ki-Yeol Kwon & Richard Kish, 2002. "Technical trading strategies and return predictability: NYSE," Applied Financial Economics, Taylor & Francis Journals, vol. 12(9), pages 639-653.
    15. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    2. Day, Min-Yuh & Ni, Yensen & Huang, Paoyu, 2019. "Trading as sharp movements in oil prices and technical trading signals emitted with big data concerns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 349-372.
    3. Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014. "Revisiting the Performance of MACD and RSI Oscillators," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 7(1), pages 1-12, February.
    4. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    5. Wang, Lijun & An, Haizhong & Liu, Xiaojia & Huang, Xuan, 2016. "Selecting dynamic moving average trading rules in the crude oil futures market using a genetic approach," Applied Energy, Elsevier, vol. 162(C), pages 1608-1618.
    6. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    7. Senol Emir & Hasan Dincer & Umit Hacioglu & Serhat Yuksel, 2016. "Random Regression Forest Model using Technical Analysis Variables: An application on Turkish Banking Sector in Borsa Istanbul (BIST)," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(3), pages 85-102, April.
    8. Bai, Limiao & Yan, Sen & Zheng, Xiaolian & Chen, Ben M., 2015. "Market turning points forecasting using wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 184-197.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:45:y:2013:i:12:p:1541-1550. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.