IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i2d10.1007_s11269-023-03692-w.html
   My bibliography  Save this article

Optimization Operation of Water Resources Using Game Theory and Marine Predator Algorithm

Author

Listed:
  • Shirin Moradi Far

    (University of Qom)

  • Parisa-Sadat Ashofteh

    (University of Qom)

Abstract

Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide efficient methods for allocating reservoirs water resources to stakeholders. In this research, for the first time, a wide range of different methods of game theory are used in order to allocate the water resources of Idoghmosh Dam reservoir (East Azarbaijan—Iran) to the agricultural and environmental stakeholders in the downstream. For this purpose, the NASH and four methods of bankruptcy theory, including PRO, AP, CEA, and CEL are used in this research. Also, in this research, the dam component is considered as a player. In the presented model for the optimal allocation of water to consumers, for the first time, the combination of game theory and the MPA as main innovation of this study is used, and the results obtained from it are compared with the GA. The proposed model is used in the base period (1987–2000) and the 14-year climate change period (2026–2039). In the following, for the first time, a wide range of different efficiency indexes of reliability, resiliency, vulnerability, flexibility, availability, supply to demand, volume reliability and SSD are used to analyze the reservoir operation policies. The results show that for each agricultural and environmental player in different base and future periods, the performance of different game theory methods on different indexes has been different. For example, the results for the agricultural player in the future period show that MPA with PRO method and then AP provided the best results for the indexes of vulnerability, resiliency, reliability, SSD, and supply to demand, that the similar values provided using GA and other bankruptcy methods have assigned lower values than MPA.

Suggested Citation

  • Shirin Moradi Far & Parisa-Sadat Ashofteh, 2024. "Optimization Operation of Water Resources Using Game Theory and Marine Predator Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(2), pages 665-699, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:2:d:10.1007_s11269-023-03692-w
    DOI: 10.1007/s11269-023-03692-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03692-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03692-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lizhong & Fang, Liping & Hipel, Keith W., 2008. "Basin-wide cooperative water resources allocation," European Journal of Operational Research, Elsevier, vol. 190(3), pages 798-817, November.
    2. Hamed Poorsepahy-Samian & Reza Kerachian & Mohammad Nikoo, 2012. "Water and Pollution Discharge Permit Allocation to Agricultural Zones: Application of Game Theory and Min-Max Regret Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4241-4257, November.
    3. Parna Parsapour-Moghaddam & Armaghan Abed-Elmdoust & Reza Kerachian, 2015. "A Heuristic Evolutionary Game Theoretic Methodology for Conjunctive Use of Surface and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3905-3918, September.
    4. Mohammad S. Khorshidi & Mohammad Reza Nikoo & Mojtaba Sadegh & Banafsheh Nematollahi, 2019. "A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1999-2014, April.
    5. Ali Zarei & Sayed-Farhad Mousavi & Madjid Eshaghi Gordji & Hojat Karami, 2019. "Optimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among Consumers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3071-3093, July.
    6. A. Ganji & D. Khalili & M. Karamouz & K. Ponnambalam & M. Javan, 2008. "A Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 51-66, January.
    7. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahboubeh Kalantari & Mohammad Reza Nikoo & Nasser Talebbeydokhti, 2025. "Assessment of renewable water in the face of climate change by a comprehensive analysis of adaptation strategies," Climatic Change, Springer, vol. 178(3), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zohresadat Ahmadi Forushani & Hamid R. Safavi & Reza Kerachian & Mohammad H. Golmohammadi, 2025. "A signaling game model for evaluating water allocation competitiveness with information asymmetry environment, case study: Zayandehrud River Basin, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 2639-2673, January.
    2. Hamid Kardan Moghaddam & Saman Javadi & Timothy O. Randhir & Neda Kavehkar, 2022. "A Multi-Indicator, Non-Cooperative Game Model to Resolve Conflicts for Aquifer Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5521-5543, November.
    3. Mohammad Nikoo & Akbar Karimi & Reza Kerachian & Hamed Poorsepahy-Samian & Farhang Daneshmand, 2013. "Rules for Optimal Operation of Reservoir-River-Groundwater Systems Considering Water Quality Targets: Application of M5P Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2771-2784, June.
    4. Acosta-Vega, Rick K. & Algaba, Encarnación & Sánchez-Soriano, Joaquín, 2023. "Design of water quality policies based on proportionality in multi-issue problems with crossed claims," European Journal of Operational Research, Elsevier, vol. 311(2), pages 777-788.
    5. Lingquan Dai & Huichao Dai & Haibo Liu & Yu Wang & Jiali Guo & Zhuosen Cai & Chenxi Mi, 2020. "Development of an Optimal Model for the Xiluodu-Xiangjiaba Cascade Reservoir System Considering the Downstream Environmental Flow," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    6. Mohammad Ehteram & Samira Ghotbi & Ozgur Kisi & Ahmed EL-Shafie, 2019. "Application of a Coordination Model for a Large Number of Stakeholders with a New Game Theory Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5207-5230, December.
    7. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    8. Azadeh Ahmadi & Mohammad Amin Zolfagharipoor & Ali Akbar Afzali, 2019. "Stability Analysis of Stakeholders’ Cooperation in Inter-Basin Water Transfer Projects: a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 1-18, January.
    9. William Thomson, 2007. "On the existence of consistent rules to adjudicate conflicting claims: a constructive geometric approach," Review of Economic Design, Springer;Society for Economic Design, vol. 11(3), pages 225-251, November.
    10. Ketelaars, Martijn & Borm, Peter & Herings, P.J.J., 2023. "Duality in Financial Networks," Other publications TiSEM 26750293-9599-4e05-9ae1-8, Tilburg University, School of Economics and Management.
    11. Erlanson, Albin & Szwagrzak, Karol, 2013. "Strategy-Proof Package Assignment," Working Papers 2013:43, Lund University, Department of Economics.
    12. Jingyi Xue, 2018. "Fair division with uncertain needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 105-136, June.
    13. Lahiri, Somdeb, 2001. "Axiomatic characterizations of the CEA solution for rationing problems," European Journal of Operational Research, Elsevier, vol. 131(1), pages 162-170, May.
    14. Padilla Tinoco, Silvia Valeria & Creemers, Stefan & Boute, Robert N., 2017. "Collaborative shipping under different cost-sharing agreements," European Journal of Operational Research, Elsevier, vol. 263(3), pages 827-837.
    15. Sylvain Béal & Stéphane Gonzalez & Philippe Solal & Peter Sudhölter, 2023. "Axiomatic characterizations of the core without consistency," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 687-701, September.
    16. Dutta, Bhaskar & Ehlers, Lars & Kar, Anirban, 2010. "Externalities, potential, value and consistency," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2380-2411, November.
    17. Pálvölgyi, Dénes & Peters, Hans & Vermeulen, Dries, 2014. "A strategic approach to multiple estate division problems," Games and Economic Behavior, Elsevier, vol. 88(C), pages 135-152.
    18. Jens Leth Hougaard & Juan D. Moreno-Ternero & Lars Peter Østerdal, 2010. "Baseline Rationing," Discussion Papers 10-16, University of Copenhagen. Department of Economics.
    19. José-Manuel Giménez-Gómez & António Osório & Josep E. Peris, 2015. "From Bargaining Solutions to Claims Rules: A Proportional Approach," Games, MDPI, vol. 6(1), pages 1-7, March.
    20. Nir Dagan & Oscar Volij & Roberto Serrano, 1999. "Feasible implementation of taxation methods," Review of Economic Design, Springer;Society for Economic Design, vol. 4(1), pages 57-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:2:d:10.1007_s11269-023-03692-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.