IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i14d10.1007_s11269-022-03310-1.html
   My bibliography  Save this article

A Multi-Indicator, Non-Cooperative Game Model to Resolve Conflicts for Aquifer Restoration

Author

Listed:
  • Hamid Kardan Moghaddam

    (Water Research Institute)

  • Saman Javadi

    (University of Tehran)

  • Timothy O. Randhir

    (University of Massachusetts)

  • Neda Kavehkar

    (Ministry of Energy)

Abstract

Climatic and environmental stresses on water resources, increasing water demands, and farmers' adverse economic conditions are significant drivers of increased conflicts between farmers and water managers. These conflicts remain a major hurdle in sustaining water resources, which should be addressed using sustainable development concepts. A non-cooperative game model is developed to address these conflicts and to reduce the stress on an aquifer in the arid zone using sustainable development criteria (environmental, social, and economic dimensions). The multi-indicator game model extends the asymmetric Nash bargaining solution for solving conflicts using aquifer sustainability and socioeconomic indicators as satisfaction indicators for water resources managers and the farmers, respectively. Quantitative and qualitative sustainability indicators were assessed for aquifer restoration strategies. A social satisfaction indicator was also evaluated for each strategy by using a questionnaire. Groundwater withdrawal reduction, improving the artificial recharging system, optimizing the cropping pattern, and combining these strategies in two states with and without financial incentives to the farmers were assessed using a non-cooperative game to restore the aquifer. The strategy of optimizing the cropping pattern and the combined strategy of a 1% reduction in groundwater withdrawal and improving the artificial recharging were the first and second priorities, respectively. In the selected strategy, quantitative sustainability indictor, qualitative sustainability indicator and economical indictor were obtained for the government 0.53, 0.08 and 0.69 respectively. In this strategy, social satisfaction and economic indicators were 0.7 and 0.71 for farmers. The sensitivity analysis of the developed game model showed that by increasing the power of water resource managers, the groundwater withdrawal reduction strategies become the equilibrium point for the conflict solution. This result can be used to resolve conflicts and to achieve quantitative and qualitative sustainability in aquifer management.

Suggested Citation

  • Hamid Kardan Moghaddam & Saman Javadi & Timothy O. Randhir & Neda Kavehkar, 2022. "A Multi-Indicator, Non-Cooperative Game Model to Resolve Conflicts for Aquifer Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5521-5543, November.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:14:d:10.1007_s11269-022-03310-1
    DOI: 10.1007/s11269-022-03310-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03310-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03310-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Zarei & Sayed-Farhad Mousavi & Madjid Eshaghi Gordji & Hojat Karami, 2019. "Optimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among Consumers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3071-3093, July.
    2. Ching-Wen Chen & Chih-Chiang Wei & Hung-Jen Liu & Nien-Sheng Hsu, 2014. "Application of Neural Networks and Optimization Model in Conjunctive Use of Surface Water and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2813-2832, August.
    3. Mohammad Ehteram & Samira Ghotbi & Ozgur Kisi & Ahmed EL-Shafie, 2019. "Application of a Coordination Model for a Large Number of Stakeholders with a New Game Theory Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5207-5230, December.
    4. Hamed Poorsepahy-Samian & Reza Kerachian & Mohammad Nikoo, 2012. "Water and Pollution Discharge Permit Allocation to Agricultural Zones: Application of Game Theory and Min-Max Regret Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4241-4257, November.
    5. Hamid Kardan Moghaddam & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "A framework for the assessment of qualitative and quantitative sustainable development of groundwater system," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1096-1110, November.
    6. Ahmad Jafarzadeh & Abbas Khashei-Siuki & Mohsen Pourreza-Bilondi, 2022. "Performance Assessment of Model Averaging Techniques to Reduce Structural Uncertainty of Groundwater Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 353-377, January.
    7. Abolfazl Akbarpour & Mohammad Javad Zeynali & Mohammad Nazeri Tahroudi, 2020. "Locating Optimal Position of Pumping Wells in Aquifer Using Meta-Heuristic Algorithms and Finite Element Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 21-34, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    2. Rong Tang & Ke Li & Wei Ding & Yuntao Wang & Huicheng Zhou & Guangtao Fu, 2020. "Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1005-1020, February.
    3. Qianwen Yu & Zehao Sun & Junyuan Shen & Xia Xu & Xiangnan Chen, 2023. "Interactive Allocation of Water Pollutant Initial Emission Rights in a Basin under Total Amount Control: A Leader-Follower Hierarchical Decision Model," IJERPH, MDPI, vol. 20(2), pages 1-25, January.
    4. Hadi El-Amine & Ebru K. Bish & Douglas R. Bish, 2018. "Robust Postdonation Blood Screening Under Prevalence Rate Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 1-17, 1-2.
    5. Mohammad Nikoo & Akbar Karimi & Reza Kerachian & Hamed Poorsepahy-Samian & Farhang Daneshmand, 2013. "Rules for Optimal Operation of Reservoir-River-Groundwater Systems Considering Water Quality Targets: Application of M5P Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2771-2784, June.
    6. Mohammad Nikoo & Akbar Karimi & Reza Kerachian, 2013. "Optimal Long-term Operation of Reservoir-river Systems under Hydrologic Uncertainties: Application of Interval Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3865-3883, September.
    7. Javad Jamshidi & Mojtaba Shourian, 2019. "Hedging Rules-Based Optimal Reservoir Operation Using Bat Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4525-4538, October.
    8. Acosta-Vega, Rick K. & Algaba, Encarnación & Sánchez-Soriano, Joaquín, 2023. "Design of water quality policies based on proportionality in multi-issue problems with crossed claims," European Journal of Operational Research, Elsevier, vol. 311(2), pages 777-788.
    9. Nadine Wittmann, 2014. "A Microeconomic Perspective on Water Resources Management: Analyzing the Effects on Optimal Land Rents Along a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1309-1325, March.
    10. Mohammad Ehteram & Ali Najah Ahmed & Ming Fai Chow & Sarmad Dashti Latif & Kwok-wing Chau & Kai Lun Chong & Ahmed El-Shafie, 2023. "Optimal operation of hydropower reservoirs under climate change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10627-10659, October.
    11. Triptimoni Borah & Rajib Kumar Bhattacharjya, 2016. "Development of an Improved Pollution Source Identification Model Using Numerical and ANN Based Simulation-Optimization Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5163-5176, November.
    12. Lingquan Dai & Huichao Dai & Haibo Liu & Yu Wang & Jiali Guo & Zhuosen Cai & Chenxi Mi, 2020. "Development of an Optimal Model for the Xiluodu-Xiangjiaba Cascade Reservoir System Considering the Downstream Environmental Flow," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    13. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    14. Mostafa Mardani Najafabadi & Abbas Mirzaei & Hassan Azarm & Siamak Nikmehr, 2022. "Managing Water Supply and Demand to Achieve Economic and Environmental Objectives: Application of Mathematical Programming and ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3007-3027, July.
    15. D.-A. An-Vo & S. Mushtaq & T. Nguyen-Ky & J. Bundschuh & T. Tran-Cong & T. Maraseni & K. Reardon-Smith, 2015. "Nonlinear Optimisation Using Production Functions to Estimate Economic Benefit of Conjunctive Water Use for Multicrop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2153-2170, May.
    16. Zhenfang He & Yaonan Zhang & Qingchun Guo & Xueru Zhao, 2014. "Comparative Study of Artificial Neural Networks and Wavelet Artificial Neural Networks for Groundwater Depth Data Forecasting with Various Curve Fractal Dimensions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5297-5317, December.
    17. Juana Moiwo & Fulu Tao, 2014. "Evidence of Land-use Controlled Water Storage Depletion in Hai River Basin, North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4733-4746, October.
    18. Chongfeng Ren & Ruihuan Li & Ping Guo, 2016. "Two-Stage DEA Analysis of Water Resource Use Efficiency," Sustainability, MDPI, vol. 9(1), pages 1-17, December.
    19. Mohammad Nikoo & Reza Kerachian & Mohammad Niksokhan, 2012. "Equitable Waste Load Allocation in Rivers Using Fuzzy Bi-matrix Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4539-4552, December.
    20. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:14:d:10.1007_s11269-022-03310-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.