IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i9d10.1007_s11269-024-03824-w.html
   My bibliography  Save this article

Nonlinear Segmental Runoff Ensemble Prediction Model Using BMA

Author

Listed:
  • Xiaoxuan Zhang

    (Northwest A&F University
    Northwest A&F University)

  • Songbai Song

    (Northwest A&F University
    Northwest A&F University)

  • Tianli Guo

    (Northwest A&F University
    Northwest A&F University)

Abstract

In this study, a novel nonlinear segmental runoff ensemble forecast model based on the Bayesian model averaging (BMA) algorithm (NLTM-BMAm(P-III)) is proposed based on multimodel ensemble prediction for forecasting monthly runoff and quantifying forecast uncertainty. Four nonlinear time series models were used as ensemble members, and runoff segmented intervals were divided based on P-III type hydrological frequency curves. On this basis, the BMA algorithm was used to obtain the weight sets of each interval after the Box‒Cox transformation. Finally, the mean and probability forecasts were obtained using the weighted average method and the Monte Carlo method. The model was applied to monthly runoff forecasts at eight hydrological stations in the Hei River Basin and two hydrological stations in the Wei River Basin; and compared with the whole-segment simple averaging model NLTM-SMA, the whole-segment Bayesian averaging model NLTM-BMA1 and the segmented Bayesian averaging model with normal distribution partitioning NLTM-BMAm(Normal). The results show that (1) the BMA algorithm yields more reliable forecasts than the SMA algorithm, (2) Segmentation criteria appropriate for the runoff distribution can improve the forecasting accuracy, which would otherwise be reduced, and (3) Compared with the NLTM-SMA and NLTM-BMA1 models, the NLTM-BMAm(P-III) model yields a higher CR value, demonstrating that the segmented ensemble forecasting model can improve the accuracy of probability prediction by considering the diversity of ensemble members. Additionally, the BMA algorithm has good applicability in the segmented ensemble model. The model provides a new method for medium- and long-term runoff forecasting.

Suggested Citation

  • Xiaoxuan Zhang & Songbai Song & Tianli Guo, 2024. "Nonlinear Segmental Runoff Ensemble Prediction Model Using BMA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3429-3446, July.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03824-w
    DOI: 10.1007/s11269-024-03824-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03824-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03824-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Baran, Sándor & Lerch, Sebastian, 2018. "Combining predictive distributions for the statistical post-processing of ensemble forecasts," International Journal of Forecasting, Elsevier, vol. 34(3), pages 477-496.
    2. Farshid Rezaei & Rezvane Ghorbani & Najmeh Mahjouri, 2022. "Improving Daily and Monthly River Discharge Forecasts using Geostatistical Ensemble Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5063-5089, October.
    3. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    4. Ahmad Jafarzadeh & Abbas Khashei-Siuki & Mohsen Pourreza-Bilondi, 2022. "Performance Assessment of Model Averaging Techniques to Reduce Structural Uncertainty of Groundwater Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 353-377, January.
    5. Huaping Huang & Zhongmin Liang & Binquan Li & Dong Wang & Yiming Hu & Yujie Li, 2019. "Combination of Multiple Data-Driven Models for Long-Term Monthly Runoff Predictions Based on Bayesian Model Averaging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3321-3338, July.
    6. Leihua Dong & Lihua Xiong & Kun-xia Yu, 2013. "Uncertainty Analysis of Multiple Hydrologic Models Using the Bayesian Model Averaging Method," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-11, December.
    7. Leihua Dong & Lihua Xiong & Kun-xia Yu, 2013. "Uncertainty Analysis of Multiple Hydrologic Models Using the Bayesian Model Averaging Method," Journal of Applied Mathematics, John Wiley & Sons, vol. 2013(1).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojtaba Poursaeid & Amir Hossein Poursaeed & Saeid Shabanlou, 2025. "Water Resources Quality Indicators Monitoring by Nonlinear Programming and Simulated Annealing Optimization with Ensemble Learning Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1073-1087, February.
    2. Runxi Li & Chengshuai Liu & Yehai Tang & Chaojie Niu & Yang Fan & Qingyuan Luo & Caihong Hu, 2024. "Study on Runoff Simulation with Multi-source Precipitation Information Fusion Based on Multi-model Ensemble," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6139-6155, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    2. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    3. Lars-H. R. Siemers, 2024. "On the Hamilton-HP Filter Controversy: Evidence from German Business Cycles," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 20(3), pages 367-409, November.
    4. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    5. Chkili, Walid & Nguyen, Duc Khuong, 2014. "Exchange rate movements and stock market returns in a regime-switching environment: Evidence for BRICS countries," Research in International Business and Finance, Elsevier, vol. 31(C), pages 46-56.
    6. Manuela Goretti, 2005. "The Brazilian currency turmoil of 2002: a nonlinear analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(4), pages 289-306.
    7. David Andolfatto & Paul Gomme, 2003. "Monetary Policy Regimes and Beliefs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(1), pages 1-30, February.
    8. Valentina Aprigliano & Danilo Liberati, 2021. "Using Credit Variables to Date Business Cycle and to Estimate the Probabilities of Recession in Real Time," Manchester School, University of Manchester, vol. 89(S1), pages 76-96, September.
    9. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    10. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    11. Xi, Xiaojing & Mamon, Rogemar, 2011. "Parameter estimation of an asset price model driven by a weak hidden Markov chain," Economic Modelling, Elsevier, vol. 28(1-2), pages 36-46, January.
    12. Anne Morrison Piehl & Suzanne J. Cooper & Anthony A. Braga & David M. Kennedy, 2003. "Testing for Structural Breaks in the Evaluation of Programs," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 550-558, August.
    13. Sarah Arndt & Zeno Enders, 2023. "The Transmission of Supply Shocks in Different Inflation Regimes," CESifo Working Paper Series 10839, CESifo.
    14. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    15. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.
    16. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    17. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    18. Nemati, Mehdi & Saghaian, Sayed H., 2016. "Dynamics of Price Adjustment in Qualitatively Differentiated Markets in the U.S.: The Case of Organic and Conventional Apples," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229950, Southern Agricultural Economics Association.
    19. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    20. Flavin, Thomas J. & Panopoulou, Ekaterini & Unalmis, Deren, 2008. "On the stability of domestic financial market linkages in the presence of time-varying volatility," Emerging Markets Review, Elsevier, vol. 9(4), pages 280-301, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03824-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.