IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i1p275-291.html
   My bibliography  Save this article

Residential Water Use: Efficiency, Affordability, and Price Elasticity

Author

Listed:
  • Ming-Feng Hung
  • Bin-Tzong Chie

Abstract

In practice, water pricing is the main economic instrument used to discourage the wasteful use of residential water. Owing to considerations of affordability, residential water is systematically underpriced because water is essential for life. Such a low price results in water being used inefficiently. This paper proposes a system that supplements the existing price system with a cap-and-trade measure to reconcile conflicts among the goals of residential water use. It forces all people (independent of income) to be faced with reasonable price signals and to use water efficiently. The poor could, however, gain from trade and afford water. By taking advantage of the agent-based model, a simulation of this system applied to Taipei, Taiwan shows that those with lower income per capita are better off under this system even though the equilibrium price of residential water is higher. The simulated average price elasticity of market demand is −0.449. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Ming-Feng Hung & Bin-Tzong Chie, 2013. "Residential Water Use: Efficiency, Affordability, and Price Elasticity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 275-291, January.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:1:p:275-291
    DOI: 10.1007/s11269-012-0185-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0185-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0185-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronald C. Griffin, 2006. "Water Resource Economics: The Analysis of Scarcity, Policies, and Projects," MIT Press Books, The MIT Press, edition 1, volume 1, number 026207267x, December.
    2. Henry S. Foster, Jr. & Bruce R. Beattie, 1981. "On the Specification of Price in Studies of Consumer Demand under Block Price Scheduling," Land Economics, University of Wisconsin Press, vol. 57(4), pages 624-629.
    3. Dinusha Dharmaratna & Edwyna Harris, 2012. "Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2283-2299, June.
    4. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    5. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2011. "Panel Data Analysis Of Japanese Residential Water Demand Using A Discrete/Continuous Choice Approach," The Japanese Economic Review, Japanese Economic Association, vol. 62(3), pages 365-386, September.
    6. R. Bruce Billings, 1982. "Specification of Block Rate Price Variables in Demand Models," Land Economics, University of Wisconsin Press, vol. 58(3), pages 386-394.
    7. J. Elnaboulsi, 2001. "Nonlinear Pricing and Capacity Planning for Water and Wastewater Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(1), pages 55-69, February.
    8. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    9. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
    10. Weitzman, Martin L, 1978. "Optimal Rewards for Economic Regulation," American Economic Review, American Economic Association, vol. 68(4), pages 683-691, September.
    11. R. Bruce Billings & Donald E. Agthe, 1980. "Price Elasticities for Water: A Case of Increasing Block Rates," Land Economics, University of Wisconsin Press, vol. 56(1), pages 73-84.
    12. Henry S. Foster, Jr. & Bruce R. Beattie, 1979. "Urban Residential Demand for Water in the United States," Land Economics, University of Wisconsin Press, vol. 55(1), pages 43-58.
    13. Shin, Jeong-Shik, 1985. "Perception of Price When Price Information Is Costly: Evidence from Residential Electricity Demand," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 591-598, November.
    14. Jean-Daniel Rinaudo & Noémie Neverre & Marielle Montginoul, 2012. "Simulating the Impact of Pricing Policies on Residential Water Demand: A Southern France Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2057-2068, May.
    15. Olmstead, Sheila M., 2009. "Reduced-Form Versus Structural Models of Water Demand Under Nonlinear Prices," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 84-94.
    16. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    17. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    18. Roberto Martinez-Espineira & Celine Nauges, 2004. "Is all domestic water consumption sensitive to price control?," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1697-1703.
    19. Ereney Hadjigeorgalis, 2009. "A Place for Water Markets: Performance and Challenges," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(1), pages 50-67.
    20. Sylvestre Gaudin & Ronald C. Griffin & Robin C. Sickles, 2001. "Demand Specification for Municipal Water Management: Evaluation of the Stone-Geary Form," Land Economics, University of Wisconsin Press, vol. 77(3), pages 399-422.
    21. James J. Opaluch, 1982. "Urban Residential Demand for Water in the United States: Further Discussion," Land Economics, University of Wisconsin Press, vol. 58(2), pages 225-227.
    22. Mary E. Renwick & Sandra O. Archibald, 1998. "Demand Side Management Policies for Residential Water Use: Who Bears the Conservation Burden?," Land Economics, University of Wisconsin Press, vol. 74(3), pages 343-359.
    23. Michael L. Nieswiadomy & David J. Molina, 1989. "Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates Using Household Data," Land Economics, University of Wisconsin Press, vol. 65(3), pages 280-289.
    24. John A. Nordin, 1976. "A Proposed Modification of Taylor's Demand Analysis: Comment," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 719-721, Autumn.
    25. Lester D. Taylor, 1975. "The Demand for Electricity: A Survey," Bell Journal of Economics, The RAND Corporation, vol. 6(1), pages 74-110, Spring.
    26. Roberts, Marc J. & Spence, Michael, 1976. "Effluent charges and licenses under uncertainty," Journal of Public Economics, Elsevier, vol. 5(3-4), pages 193-208.
    27. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    28. Jihad Elnaboulsi, 2001. "Nonlinear pricing and capacity planning for water and wastewater services," Post-Print hal-00447925, HAL.
    29. Jacoby, Henry D. & Ellerman, A. Denny, 2004. "The safety valve and climate policy," Energy Policy, Elsevier, vol. 32(4), pages 481-491, March.
    30. R. G. Taylor & John R. McKean & Robert A. Young, 2004. "Alternate Price Specifications for Estimating Residential Water Demand with Fixed Fees," Land Economics, University of Wisconsin Press, vol. 80(3), pages 463-475.
    31. Ereney Hadjigeorgalis, 2009. "A Place for Water Markets: Performance and Challenges," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(1), pages 50-67.
    32. Krause, Kate & Chermak, Janie M & Brookshire, David S, 2003. "The Demand for Water: Consumer Response to Scarcity," Journal of Regulatory Economics, Springer, vol. 23(2), pages 167-191, March.
    33. Lee, Terence R. & Jouravlev, Andrei, 1998. "Prices, property and markets in water allocation," Medio Ambiente y Desarrollo 5735, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    2. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    3. Wu, Zheng & Tian, Guiliang & Xia, Qing & Hu, Hao & Li, Jiawen, 2023. "Connotation, calculation and influencing factors of the water-use rights benchmark price: A case study of agricultural water use in the Ningxia Yellow River irrigation area," Agricultural Water Management, Elsevier, vol. 283(C).
    4. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    5. Minh Ha-Duong & Nguyen Son, 2021. "Subjective satisfaction and objective electricity poverty reduction in Vietnam, 2008-2018," Post-Print hal-03160911, HAL.
    6. Marcos García-López & Borja Montano & Joaquín Melgarejo, 2020. "Water Pricing Policy as Tool to Induce Efficiency in Water Resources Management," IJERPH, MDPI, vol. 17(10), pages 1-19, May.
    7. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    8. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    9. Ming-Feng Hung & Bin-Tzong Chie & Huei-Chu Liao, 2020. "A Comparison of Electricity-Pricing Programs: Economic Efficiency, Cost Recovery, and Income Distribution," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(1), pages 143-163, February.
    10. Jingdong Zhang & Jiatian Fu & Chaoyang Liu & Zhiguang Qu & Yanan Li & Fei Li & Zhaofei Yang & Luping Jiang, 2019. "Evaluating Water Resource Assets Based on Fuzzy Comprehensive Evaluation Model: A Case Study of Wuhan City, China," Sustainability, MDPI, vol. 11(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    2. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    3. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    4. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
    5. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.
    6. Dinusha Dharmaratna & Edwyna Harris, 2012. "Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2283-2299, June.
    7. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    8. Havranek, Tomas & Irsova, Zuzana & Vlach, Tomas, 2016. "Publication Bias in Measuring the Income Elasticity of Water Demand," MPRA Paper 75247, University Library of Munich, Germany.
    9. Jiménez, Darío F. & Orrego, Sergio A. & Vásquez, Felipe A. & Ponce, Roberto D., 2016. "Estimación de la demanda de agua para uso residencial urbano usando un modelo discreto-continuo y datos desagregados a nivel de hogar: el caso de la ciudad de Manizales, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 153-178, December.
    10. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    11. Acuña, Guillermo, 2017. "Elasticidades de la demanda de agua en Chile [Elasticities of water demand in Chile]," MPRA Paper 82916, University Library of Munich, Germany.
    12. Diakité, Daouda & Thomas, Alban, 2011. "La demande domestique d’eau potable : une étude sur un panel de communes ivoiriennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 87(3), pages 269-299, septembre.
    13. Guillermo Ignacio Acuña & Cristián Echeverría & Alex Godoy & Felipe Vásquez, 2020. "The role of climate variability in convergence of residential water consumption across Chilean localities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(1), pages 89-108, January.
    14. Dinusha Dharmaratna & Edwyna Harris, 2010. "Estimating Residential Water Demand using the Stone-Geary Functional Form: the Case of Sri Lanka," Monash Economics Working Papers 46-10, Monash University, Department of Economics.
    15. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    16. Marie-Estelle Binet & Fabrizio Carlevaro & Michel Paul, 2014. "Estimation of Residential Water Demand with Imperfect Price Perception," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 561-581, December.
    17. Roberto Martínez-Espiñeira, 2007. "An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques," Journal of Applied Economics, Taylor & Francis Journals, vol. 10(1), pages 161-184, May.
    18. Christopher Boyer & Damian Adams & Tatiana Borisova & Christopher Clark, 2012. "Factors Driving Water Utility Rate Structure Choice: Evidence from Four Southern U.S. States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2747-2760, August.
    19. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    20. R. Quentin Grafton & Tom Kompas & Hang To & Michael Ward, 2009. "Residential Water Consumption: A Cross Country Analysis," Environmental Economics Research Hub Research Reports 0923, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University, revised Aug 2009.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:1:p:275-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.